Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin

被引:113
作者
Vasilieva, Lidia [1 ]
Kim, Minkyu [1 ]
Terzi, Nihal [1 ]
Soares, Luis M. [1 ]
Buratowski, Stephen [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1016/j.molcel.2008.01.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Within the heterochromatin of budding yeast, RNA polymerase II (RNAPII) transcription is repressed by the Sir2 deacetylase. Although heterochromatic silencing is generally thought to be due to limited accessibility of the underlying DNA, there are several reports of RNAPII and basal transcription factors within silenced regions. Analysis of the rDNA array revealed cryptic RNAPII transcription within the "non-transcribed" spacer region. These transcripts are terminated by the Nrd1 /Sen1 complex and degraded by the exosome. Mutations in this pathway lead to decreased silencing and dramatic chromatin changes in the rDNA locus. Interestingly, Nrd1 mutants also show higher levels of rDNA recombination, suggesting that the cryptic RNAPII transcription might have a physiological role in regulating rDNA copy number. The Nrd1/Sen1/exosome pathway also contributes to silencing at telomeric loci. These results suggest that silencing of heterochromatic genes in Saccharomyces cerevisiae occurs at both transcriptional and posttranscriptional levels.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 60 条
  • [1] Termination of cryptic unstable transcripts is directed by yeast RNA-Binding proteins Nrd1 and Nab3
    Arigo, John T.
    Eyler, Daniel E.
    Carroll, Kristina L.
    Corden, Jeffry L.
    [J]. MOLECULAR CELL, 2006, 23 (06) : 841 - 851
  • [2] Regulation of yeast NRD1 expression by premature transcription termination
    Arigo, JT
    Carroll, KL
    Ames, JM
    Corden, JL
    [J]. MOLECULAR CELL, 2006, 21 (05) : 641 - 651
  • [3] High-resolution profiling of histone methylations in the human genome
    Barski, Artern
    Cuddapah, Suresh
    Cui, Kairong
    Roh, Tae-Young
    Schones, Dustin E.
    Wang, Zhibin
    Wei, Gang
    Chepelev, Iouri
    Zhao, Keji
    [J]. CELL, 2007, 129 (04) : 823 - 837
  • [4] Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae
    Briggs, SD
    Bryk, M
    Strahl, BD
    Cheung, WL
    Davie, JK
    Dent, SYR
    Winston, F
    Allis, CD
    [J]. GENES & DEVELOPMENT, 2001, 15 (24) : 3286 - 3295
  • [5] Evidence that SET1, a factor required for methylation of histone H3, regulates rDNA silencing in S-cerevisiae by a sir2-independent mechanism
    Bryk, M
    Briggs, SD
    Strahl, BD
    Curcio, MJ
    Allis, CD
    Winston, F
    [J]. CURRENT BIOLOGY, 2002, 12 (02) : 165 - 170
  • [6] RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing
    Buehler, Marc
    Haas, Wilhelm
    Gygi, Steven P.
    Moazed, Danesh
    [J]. CELL, 2007, 129 (04) : 707 - 721
  • [7] Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing
    Buhler, Marc
    Verdel, André
    Moazed, Danesh
    [J]. CELL, 2006, 125 (05) : 873 - 886
  • [8] Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in s.: cerevisiae
    Camblong, Jurgi
    Iglesias, Nahid
    Fickentscher, Céline
    Dieppois, Guennaelle
    Stutz, Françoise
    [J]. CELL, 2007, 131 (04) : 706 - 717
  • [9] Mechanism of transcriptional silencing in yeast
    Chen, LY
    Widom, J
    [J]. CELL, 2005, 120 (01) : 37 - 48
  • [10] Conrad NK, 2000, GENETICS, V154, P557