An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia

被引:72
作者
Brooks, AE [1 ]
Steinkraus, HB [1 ]
Nelson, SR [1 ]
Lewis, RV [1 ]
机构
[1] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA
关键词
D O I
10.1021/bm050421e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The major ampullate fiber of both Nephila clavipes and Argiope aurantia is composed of two different proteins, MaSp1 and MaSp2. Each of these proteins has a highly conserved pattern of silk-associated amino acid motifs. The GPGXX motif is the only source of proline and is unique to MaSp2. On the basis of the percent of proline, Nephila clavipes major ampullate silk was calculated to consist of 19% MaSp2 and 81% MaSp1, while Argiope aurantia was calculated to have a significantly higher MaSp2 content of 59% with MaSp1 comprising the remaining 41 %. To investigate the functional implications of the difference in protein composition, major ampullate silk fibers from Nephila clavipes and Argiope aurantia were mechanically tested and compared. Stress-strain curves produced from polynomial regression show that the two significant differences between major ampullate silk fibers from Nephila clavipes and Argiope aurantia are the average peak load stress and Young's modulus, with Argiope higher for both.
引用
收藏
页码:3095 / 3099
页数:5
相关论文
共 27 条
[1]   Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus [J].
Blackledge, TA ;
Swindeman, JE ;
Hayashi, CY .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2005, 208 (10) :1937-1949
[2]   SYSTEMATICS AND EVOLUTION OF SPIDERS (ARANEAE) [J].
CODDINGTON, JA ;
LEVI, HW .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1991, 22 :565-592
[3]   Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions" [J].
Colgin, MA ;
Lewis, RV .
PROTEIN SCIENCE, 1998, 7 (03) :667-672
[4]   A DECODER NMR study of backbone orientation in Nephila clavipes dragline silk under varying strain and draw rate [J].
Eles, PT ;
Michal, CA .
BIOMACROMOLECULES, 2004, 5 (03) :661-665
[5]  
Fahnestock S R, 2000, J Biotechnol, V74, P105, DOI 10.1016/S1389-0352(00)00008-8
[6]   Synthetic spider dragline silk proteins and their production in Escherichia coli [J].
Fahnestock, SR ;
Irwin, SL .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 47 (01) :23-32
[7]   Extreme diversity, conservation, and convergence of spider silk fibroin sequences [J].
Gatesy, J ;
Hayashi, C ;
Motriuk, D ;
Woods, J ;
Lewis, R .
SCIENCE, 2001, 291 (5513) :2603-2605
[8]   SPIDER SILK AS RUBBER [J].
GOSLINE, JM ;
DENNY, MW ;
DEMONT, ME .
NATURE, 1984, 309 (5968) :551-552
[9]   Fiber morphology of spider silk: The effects of tensile deformation [J].
Grubb, DT ;
Jelinski, LW .
MACROMOLECULES, 1997, 30 (10) :2860-2867
[10]   Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins [J].
Hayashi, CY ;
Shipley, NH ;
Lewis, RV .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1999, 24 (2-3) :271-275