Iterative experiment design guides the characterization of a light-inducible gene expression circuit

被引:44
作者
Ruess, Jakob [1 ]
Parise, Francesca [1 ]
Milias-Argeitis, Andreas [2 ]
Khammash, Mustafa [2 ]
Lygeros, John [1 ]
机构
[1] ETH, Automat Control Lab, CH-4058 Basel, Switzerland
[2] ETH, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
关键词
stochastic kinetic models; optimal experiment design; in vivo control; parameter inference; light-induced gene expression; SYSTEMS BIOLOGY; NOISE; INFERENCE; NETWORKS; ROBUSTNESS; DYNAMICS; KINETICS; PROTEIN; MODELS; SIGNAL;
D O I
10.1073/pnas.1423947112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time.
引用
收藏
页码:8148 / 8153
页数:6
相关论文
共 32 条
[1]   Stimulus design for model selection and validation in cell signaling [J].
Apgar, Joshua F. ;
Toettcher, Jared E. ;
Endy, Drew ;
White, Forest M. ;
Tidor, Bruce .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (02)
[2]   Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model [J].
Bandara, Samuel ;
Schloeder, Johannes P. ;
Eils, Roland ;
Bock, Hans Georg ;
Meyer, Tobias .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (11)
[3]   Sloppiness, robustness, and evolvability in systems biology [J].
Daniels, Bryan C. ;
Chen, Yan-Jiun ;
Sethna, James P. ;
Gutenkunst, Ryan N. ;
Myers, Christopher R. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (04) :389-395
[4]   GENERAL METHOD FOR NUMERICALLY SIMULATING STOCHASTIC TIME EVOLUTION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) :403-434
[5]  
Klipp Edda., 2013, Systems biology, DOI DOI 10.1002/wsbm.144
[6]   Sensitivity, robustness, and identifiability in stochastic chemical kinetics models [J].
Komorowski, Michal ;
Costa, Maria J. ;
Rand, David A. ;
Stumpf, Michael P. H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (21) :8645-8650
[7]   Maximizing the Information Content of Experiments in Systems Biology [J].
Liepe, Juliane ;
Filippi, Sarah ;
Komorowski, Michal ;
Stumpf, Michael P. H. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (01)
[8]   The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations [J].
Lillacci, Gabriele ;
Khammash, Mustafa .
BIOINFORMATICS, 2013, 29 (18) :2311-2319
[9]   Parameter Estimation and Model Selection in Computational Biology [J].
Lillacci, Gabriele ;
Khammash, Mustafa .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (03)
[10]  
Ljung L., 1999, System Identification: Theory for the User, V2nd