Hydrogen-bond energetics drive helix formation in membrane interfaces

被引:45
作者
Almeida, Paulo F. [3 ]
Ladokhin, Alexey S. [4 ]
White, Stephen H. [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Ctr Biomembrane Syst, Irvine, CA 92697 USA
[3] Univ N Carolina Wilmington, Dept Chem & Biochem, Wilmington, NC 28403 USA
[4] Univ Kansas, Med Ctr, Dept Biochem & Mol Biol, Kansas City, KS 66160 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2012年 / 1818卷 / 02期
关键词
Membrane-active peptide; Membrane protein folding; Antimicrobial peptide; Thermodynamics; BILAYER INTERACTIONS; ALPHA-HELIX; X-RAY; PEPTIDE; THERMODYNAMICS; INDOLICIDIN; MELITTIN; PROTEINS; BINDING; HYDROPHOBICITY;
D O I
10.1016/j.bbamem.2011.07.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The free energy cost Delta G of partitioning many unfolded peptides into membrane interfaces is unfavorable due to the cost of partitioning backbone peptide bonds. The partitioning cost is dramatically reduced if the peptide bonds participate in hydrogen bonds. The reduced cost underlies secondary structure formation by amphiphilic peptides partitioned into membrane interfaces through a process referred to as partitioning-folding coupling. This coupling is characterized by the free energy reduction per residue, Delta G(res) that drives folding. There is some debate about the correct value Of Delta G(res) and its dependence on the hydrophobic moment (mu(H)) of amphiphilic alpha-helical peptides. We show how to compute Delta G(res) correctly. Using published data for two families of peptides with different hydrophobic moments and charges, we find that Delta G(res) does not depend upon mu(H). The best estimate of Delta G(res) is -0.37 +/- 0.02 kcal mol(-1). This article is part of a Special Issue entitled: Membrane protein structure and function. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 182
页数:5
相关论文
共 29 条
[1]   Mechanisms of Antimicrobial, Cytolytic, and Cell-Penetrating Peptides: From Kinetics to Thermodynamics [J].
Almeida, Paulo F. ;
Pokorny, Antje .
BIOCHEMISTRY, 2009, 48 (34) :8083-8093
[2]  
Dill K.A., 2002, MOL DRIVING FORCES
[3]   Membrane Partitioning: "Classical" and "Nonclassical" Hydrophobic Effects [J].
Fernandez-Vidal, Monica ;
White, Stephen H. ;
Ladokhin, Alexey S. .
JOURNAL OF MEMBRANE BIOLOGY, 2011, 239 (1-2) :5-14
[4]   Folding amphipathic helices into membranes:: Amphiphilicity trumps hydrophobicity [J].
Fernandez-Vidall, Monica ;
Jayasinghe, Sajith ;
Ladokhin, Alexey S. ;
White, Stephen H. .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 370 (03) :459-470
[5]  
Hill T. L., 1986, An Introduction to Statistical Thermodynamics
[6]   Structure, location, and lipid perturbations of melittin at the membrane interface [J].
Hristova, K ;
Dempsey, CE ;
White, SH .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :801-811
[7]   An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces [J].
Hristova, K ;
White, SH .
BIOCHEMISTRY, 2005, 44 (37) :12614-12619
[8]   An amphipathic α-helix at a membrane interface:: A structural study using a novel X-ray diffraction method [J].
Hristova, K ;
Wimley, WC ;
Mishra, VK ;
Anantharamiah, GM ;
Segrest, JP ;
White, SH .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 290 (01) :99-117
[9]   Thermodynamics of Melittin Binding to Lipid Bilayers. Aggregation and Pore Formation [J].
Klocek, Gabriela ;
Schulthess, Therese ;
Shai, Yechiel ;
Seelig, Joachim .
BIOCHEMISTRY, 2009, 48 (12) :2586-2596
[10]  
Ladokhin A. S., 1996, Biophysical Journal, V70, pA447