Congenital erythropoietic porphyria: Prolonged high-level expression and correction of the heme biosynthetic defect by retroviral-mediated gene transfer into porphyric and erythroid cells

被引:20
作者
Kauppinen, R
Glass, IA
Aizencang, G
Astrin, KH
Atweh, GF
Desnick, RJ
机构
[1] CUNY Mt Sinai Sch Med, Dept Human Genet, New York, NY 10029 USA
[2] CUNY Mt Sinai Sch Med, Dept Med, New York, NY 10029 USA
[3] CUNY Mt Sinai Sch Med, Dept Pediat, New York, NY 10029 USA
关键词
congenital erythropoietic porphyria (CEP); uroporphyrinogen III synthase (UROS); porphyria; retroviral gene transfer; gene therapy;
D O I
10.1006/mgme.1998.2739
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Congenital erythropoietic porphyria (CEP) is an autosomal recessive disorder resulting from the deficient activity of the heme biosynthetic enzyme uroporphyrinogen III synthase (UROS). Severely affected patients are transfusion dependent and have mutilating cutaneous manifestations. Successful bone marrow transplantation has proven curative, providing the rationale for stem cell gene therapy. Toward this goal, two retroviral MFG vectors containing the UROS cDNA were constructed, one with the wild-type sequence (MFG-UROS-wt) and a second with an optimized Kozak consensus sequence (MFG-UROS-K). Following transduction of CEP fibroblasts, the MFG-UROS-wt and MFG-UROS-K vectors increased the endogenous activity without selection to levels that were 18- and 5-fold greater, respectively, than the mean activity in normal fibroblasts. Notably, the MFG-UROS-wt vector expressed UROS activity in CEP fibroblasts at these high levels for over 6 months without cell toxicity. Addition of either delta-aminolevulinic acid (ALA) or ferric chloride did not affect expression of the transduced UROS gene nor did the increased concentrations of uroporphyrin isomers or porphyrin intermediates affect cell viability. Similarly, transduction of CEP lymphoblasts with the MFG-UROS-wt vector without G418 selection increased the endogenous UROS activity by 7-fold or almost a-fold greater than that in normal lymphoblasts. Transduction of K562 erythroleukemia cells by cocultivation with the MFG-UROS-wt producer cells increased their high endogenous UROS activity by 1.6-fold without selection. Clonally isolated K562 cells expressed UROS for over 4 months at mean levels 4.7-fold greater than the endogenous activity without cell toxicity. Thus, the prolonged, high-level expression of UROS in transduced CEP fibroblasts and lymphoblasts, as well as in transduced K562 erythroid cells, demonstrated that the enzymatic defect in CEP cells could be corrected by retroviral-mediated gene therapy without selection and that the increased intracellular porphyrin intermediates were not toxic to these cells, even when porphyrin production was stimulated by supplemental ALA or iron. These in vitro studies provide the rationale for ex vivo stem cell gene therapy in severely affected patients with CEP. (C) 1998 Academic Press.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 35 条
[1]  
ANDERSON MA, 1984, IN VITRO CELL DEV B, V20, P856
[2]   BIOSYNTHESIS OF PORPHYRINS AND RELATED MACROCYCLES .17. CHEMICAL AND ENZYMIC TRANSFORMATION OF ISOMERIC AMINOMETHYLBILANES INTO UROPORPHYRINOGENS - PROOF THAT UNREARRANGED BILANE IS THE PREFERRED ENZYMIC SUBSTRATE AND DETECTION OF A TRANSIENT INTERMEDIATE [J].
BATTERSBY, AR ;
FOOKES, CJR ;
GUSTAFSONPOTTER, KE ;
MCDONALD, E ;
MATCHAM, GWJ .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 1982, (10) :2413-2426
[3]  
BATTERSBY AR, 1982, J CHEM SOC PERK T 1, P2427, DOI 10.1039/p19820002427
[4]  
BENSIDHOUM M, 1995, EUR J HUM GENET, V3, P102
[5]  
BENSIDHOUM M, 1997, P INT C PORPH PROPH, P100
[6]  
Bickers DR, 1991, DERMATOLOGY GEN MED, V4th, P1854
[7]   FLUOROMETRIC ASSAY OF PROTEINS IN NANOGRAM RANGE [J].
BOHLEN, P ;
STEIN, S ;
DAIRMAN, W ;
UDENFRIEND, S .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1973, 155 (01) :213-220
[8]   HETEROGENEITY OF MUTATIONS IN THE UROPORPHYRINOGEN-III SYNTHASE GENE IN CONGENITAL ERYTHROPOIETIC PORPHYRIA [J].
BOULECHFAR, S ;
DASILVA, V ;
DEYBACH, JC ;
NORDMANN, Y ;
GRANDCHAMP, B ;
DEVERNEUIL, H .
HUMAN GENETICS, 1992, 88 (03) :320-324
[9]   Molecular genetics of congenital erythropoietic porphyria [J].
Desnick, RJ ;
Glass, IA ;
Xu, WM ;
Solis, C ;
Astrin, KH .
SEMINARS IN LIVER DISEASE, 1998, 18 (01) :77-84
[10]  
DEYBACH JC, 1990, BLOOD, V75, P1763