Photoinhibition of Chlamydomonas reinhardtii in State 1 and State 2 -: Damages to the photosynthetic apparatus under linear and cyclic electron flow

被引:46
作者
Finazzi, G
Barbagallo, RP
Bergo, E
Barbato, R
Forti, G
机构
[1] CNR, Ctr Studio Biol Cellulare & Mol Piante, I-20133 Milan, Italy
[2] Univ Padua, Dipartimento Biol, I-35100 Padua, Italy
[3] Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Sci & Tecnol Avanzate, I-15100 Alessandria, Italy
关键词
D O I
10.1074/jbc.M011376200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The relationship between state transitions and photoinhibition has been studied in Chlamydomonas reinhardtii cells. In State 2, photosystem II activity was more inhibited by light than in State 1. In State 2, however, the D1 subunit was not degraded, whereas a substantial degradation was observed in State 1, These results suggest that photoinhibition occurs via the generation of an intermediate state in which photosystem II is inactive but the D1 protein is still intact. The accumulation of this state is enhanced in State 2, be cause in this State only cyclic photosynthetic electron transport is active, whereas there is no electron flow between photosystem II and the cytochrome b(6)f complex (Finazzi, G., Furia, A., Barbagallo, R, P,, and Forti, G, (1999) Biochim. Biophys. Acta 1413, 117-129). The activity of photosystem I and of cytochrome b(6)f as well as the coupling of thylakoid membranes was not affected by illumination under the same conditions. This allows repairing the damages to photosystem II thanks to cell capacity to maintain a high rate of ATP synthesis (via photosystem I-driven cyclic electron flow). This capacity might represent an important physiological tool in protecting the photosynthetic apparatus from excess of light as well. as from other a-biotic stress conditions.
引用
收藏
页码:22251 / 22257
页数:7
相关论文
共 61 条
[1]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[2]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[3]   NEW EVIDENCE SUGGESTS THAT THE INITIAL PHOTOINDUCED CLEAVAGE OF THE D1-PROTEIN MAY NOT OCCUR NEAR THE PEST SEQUENCE [J].
BARBATO, R ;
SHIPTON, CA ;
GIACOMETTI, GM ;
BARBER, J .
FEBS LETTERS, 1991, 290 (1-2) :162-166
[4]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[5]   INHIBITION OF PHOTOSYNTHETIC REACTIONS BY LIGHT - A STUDY WITH ISOLATED SPINACH-CHLOROPLASTS [J].
BARENYI, B ;
KRAUSE, GH .
PLANTA, 1985, 163 (02) :218-226
[6]   PHOTOSYNTHETIC CYTOCHROMES OF OXYGENIC ORGANISMS [J].
BENDALL, DS .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 683 (02) :119-151
[7]   PROTEIN-PHOSPHORYLATION IN GREEN PLANT CHLOROPLASTS [J].
BENNETT, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :281-311
[9]   CHLORORESPIRATION REVISITED - MITOCHONDRIAL-PLASTID INTERACTIONS IN CHLAMYDOMONAS [J].
BENNOUN, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1186 (1-2) :59-66
[10]   FLUORESCENCE AND OXYGEN EVOLUTION FROM CHLORELLA PYRENOIDOSA [J].
BONAVENTURA, C ;
MYERS, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 189 (03) :366-+