Hyperplanes for predicting protein-protein interactions

被引:82
作者
Nanni, L [1 ]
机构
[1] Univ Bologna, DEIS, CNR, IEIIT, I-40136 Bologna, Italy
关键词
protein-protein interactions; machine learning;
D O I
10.1016/j.neucom.2005.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of protein-protein interaction is a difficult and important problem in biology. Given (numerical) features, one of the existing machine learning techniques can be then applied to learn and classify proteins represented by these features. Our computational results demonstrate that a system based on K-local hyperplane outperforms the methods proposed in the literature based oil global representation of a protein pair. The approach is demonstrated by building a learning system based on experimentally validated protein-protein interactions in the human gastric bacterium Helicobacter pylori dataset and in Human dataset. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 9 条
  • [1] Whole-proteome interaction mining
    Bock, JR
    Gough, DA
    [J]. BIOINFORMATICS, 2003, 19 (01) : 125 - 134
  • [2] Predicting protein-protein interactions from primary structure
    Bock, JR
    Gough, DA
    [J]. BIOINFORMATICS, 2001, 17 (05) : 455 - 460
  • [3] Hart, 2006, PATTERN CLASSIFICATI
  • [4] Kuncheva L.I., 2005, Information Fusion, V6, P3, DOI DOI 10.1016/J.INFFUS.2004.04.009
  • [5] Predicting protein-protein interactions using signature products
    Martin, S
    Roe, D
    Faulon, JL
    [J]. BIOINFORMATICS, 2005, 21 (02) : 218 - 226
  • [6] NANNI L, 2004, IN PRESS NEUROCOMPUT
  • [7] Oleg O., 2004, P 2 EUR WORKSH DAT M, V2004, P51
  • [8] Computational methods for the prediction of protein interactions
    Valencia, A
    Pazos, F
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (03) : 368 - 373
  • [9] PROTEIN CLASSIFICATION ARTIFICIAL NEURAL SYSTEM
    WU, C
    WHITSON, G
    MCLARTY, J
    ERMONGKONCHA, A
    CHANG, TC
    [J]. PROTEIN SCIENCE, 1992, 1 (05) : 667 - 677