Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle

被引:137
作者
Bragina, Anastasia [1 ]
Berg, Christian [2 ]
Cardinale, Massimiliano [1 ]
Shcherbakov, Andrey [3 ]
Chebotar, Vladimir [3 ]
Berg, Gabriele [1 ]
机构
[1] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria
[2] Karl Franzens Univ Graz, Inst Plant Sci, Graz, Austria
[3] All Russia Res Inst Agr Microbiol, St Petersburg, Russia
关键词
abiotic factors; bog ecosystem; FISH-CLSM; deep-sequencing; microbe plus plant communities; S; magellanicum/fallax; MICROBIAL COMMUNITIES; CLIMATE-CHANGE; SOIL TYPE; PLANT; PEATLAND; INDICATOR; CARBON; ROOTS;
D O I
10.1038/ismej.2011.151
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle. The ISME Journal (2012) 6, 802-813 doi: 10.1038/ismej.2011.151; published online 17 November 2011
引用
收藏
页码:802 / 813
页数:12
相关论文
共 45 条
[1]  
[Anonymous], 2005, PHYLIP (phylogeny inference package) version 3.6
[2]   Carbon sequestration in peatland: patterns and mechanisms of response to climate change [J].
Belyea, LR ;
Malmer, N .
GLOBAL CHANGE BIOLOGY, 2004, 10 (07) :1043-1052
[3]   Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi [J].
Berg, G ;
Krechel, A ;
Ditz, M ;
Sikora, RA ;
Ulrich, A ;
Hallmann, J .
FEMS MICROBIOLOGY ECOLOGY, 2005, 51 (02) :215-229
[4]   Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere [J].
Berg, Gabriele ;
Smalla, Kornelia .
FEMS MICROBIOLOGY ECOLOGY, 2009, 68 (01) :1-13
[5]   The Use of Coded PCR Primers Enables High-Throughput Sequencing of Multiple Homolog Amplification Products by 454 Parallel Sequencing [J].
Binladen, Jonas ;
Gilbert, M. Thomas P. ;
Bollback, Jonathan P. ;
Panitz, Frank ;
Bendixen, Christian ;
Nielsen, Rasmus ;
Willerslev, Eske .
PLOS ONE, 2007, 2 (02)
[6]   Phylum- and class-specific PCR primers for general microbial community analysis [J].
Blackwood, CB ;
Oaks, A ;
Buyers, JS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (10) :6193-6198
[7]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[8]   The diversity of archaea and bacteria in association with the roots of Zea mays L. [J].
Chelius, MK ;
Triplett, EW .
MICROBIAL ECOLOGY, 2001, 41 (03) :252-263
[9]  
Daniels RE, 1985, HDB EUROPEAN SPHAGNA, P262
[10]   Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris [J].
Dedysh, SN ;
Derakshani, M ;
Liesack, W .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (10) :4850-4857