Gamma-ray bursts: afterglows from cylindrical jets

被引:21
作者
Cheng, KS
Huang, YF
Lu, T
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Nanjing Univ, Dept Astron, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Astron & Astrophys Ctr E China, Nanjing 210093, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, LCRHEA, Beijing 100039, Peoples R China
关键词
radiation mechanisms : non-thermal; stars : neutron; ISM : jets and outflows; gamma-rays : bursts;
D O I
10.1046/j.1365-8711.2001.04472.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Nearly all previous discussions on beaming effects in gamma-ray bursts (GRBs) have assumed a conical geometry. However, more and more observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' in the Galaxy have shown that many of these outflows are not conical, but cylindrical, i.e. they maintain constant cross-sections at large scales. Thus it is necessary to discuss the possibility of gamma-ray bursts being due to highly collimated cylindrical jets, not conical ones. Here we study the dynamical evolution of cylindrical jets and discuss their afterglows. Both analytical and numerical results are presented. It is shown that when the lateral expansion is not taken into account, a cylindrical jet typically remains highly relativistic for similar to 10(8)-10(9) s. During this relativistic phase, the optical afterglow at first decays as S-nu proportional to t(-p/2), where p is the index characterizing the power-law energy distribution of electrons. Then the light curve steepens to S-nu proportional to t(-(p+1)/2) due to cooling of electrons. After entering the non-relativistic phase (i.e. t greater than or equal to 10(11) s), the afterglow is S-nu proportional to t(-(5p-4)/6). However, if the cylindrical jet expands laterally at the comoving sound speed, then the decay becomes S-nu proportional to t(-p) and S-nu proportional to t(-(15p-21)/10) - t(-(15p-20)/10) in the ultrarelativistic and in the non-relativistic phase respectively. Note that in both cases the light curve turns flatter after the relativistic-Newtonian transition point, which differs markedly from the behaviour of a conical jet. It is suggested that some GRBs with afterglows decaying as t(-1.1)-t(-1.3) may be due to cylindrical jets, not necessarily isotropic fireballs.
引用
收藏
页码:599 / 606
页数:8
相关论文
共 78 条
[1]   Observation of contemporaneous optical radiation from a γ-ray burst [J].
Akerlof, C ;
Balsano, R ;
Barthelmy, S ;
Bloch, J ;
Butterworth, P ;
Casperson, D ;
Cline, T ;
Fletcher, S ;
Frontera, F ;
Gisler, G ;
Heise, J ;
Hills, J ;
Kehoe, R ;
Lee, B ;
Marshall, S ;
McKay, T ;
Miller, R ;
Piro, L ;
Priedhorsky, W ;
Szymanski, J ;
Wren, J .
NATURE, 1999, 398 (6726) :400-402
[2]  
BERGER E, 2001, UNPUB APJ
[3]   Hubble Space Telescope observations of superluminal motion in the M87 jet [J].
Biretta, JA ;
Sparks, WB ;
Macchetto, F .
ASTROPHYSICAL JOURNAL, 1999, 520 (02) :621-626
[4]  
BLANDFORD RD, 1976, PHYS FLUIDS, V19, P1130, DOI 10.1063/1.861619
[5]   Decay of the GRB 990123 optical afterglow:: Implications for the fireball model [J].
Castro-Tirado, AJ ;
Zapatero-Osorio, MR ;
Caon, N ;
Cairós, LM ;
Hjorth, J ;
Pedersen, H ;
Andersen, MI ;
Gorosabel, J ;
Bartolini, C ;
Guarnieri, A ;
Piccioni, A ;
Frontera, F ;
Masetti, N ;
Palazzi, E ;
Pian, E ;
Greiner, J ;
Hudec, R ;
Sagar, R ;
Pandey, AK ;
Mohan, V ;
Yadav, RKS ;
Nilakshi ;
Björnsson, G ;
Jakobsson, P ;
Burud, I ;
Courbin, F ;
Valentini, G ;
Piersimoni, A ;
Aceituno, J ;
Montoya, LM ;
Pedraz, S ;
Gredel, R ;
Claver, CF ;
Rector, TA ;
Rhoads, JE ;
Walter, F ;
Ott, J ;
Hippelein, H ;
Sánchez-Béjar, V ;
Gutiérrez, C ;
Oscoz, A ;
Zhu, J ;
Chen, JS ;
Zhang, HT ;
Wei, JY ;
Zhou, AY ;
Guziy, S ;
Shlyapnikov, A ;
Heise, J ;
Costa, E .
SCIENCE, 1999, 283 (5410) :2069-2073
[6]   A possible energy mechanism for cosmological γ-ray bursts [J].
Cheng, KS ;
Lu, Y .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 320 (02) :235-240
[7]   Wind interaction models for gamma-ray burst afterglows: The case for two types of progenitors [J].
Chevalier, RA ;
Li, ZY .
ASTROPHYSICAL JOURNAL, 2000, 536 (01) :195-212
[8]   Synchrotron and synchrotron self-compton emission and the blast-wave model of gamma-ray bursts [J].
Chiang, J ;
Dermer, CD .
ASTROPHYSICAL JOURNAL, 1999, 512 (02) :699-710
[9]   Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997 [J].
Costa, E ;
Frontera, F ;
Heise, J ;
Feroci, M ;
Zand, JI ;
Fiore, F ;
Cinti, MN ;
DalFiume, D ;
Nicastro, L ;
Orlandini, M ;
Palazzi, E ;
Rapisarda, M ;
Zavattini, G ;
Jager, R ;
Parmar, A ;
Owens, A ;
Molendi, S ;
Cusumano, G ;
Maccarone, MC ;
Giarrusso, S ;
Coletta, A ;
Antonelli, LA ;
Giommi, P ;
Muller, JM ;
Piro, L ;
Butler, RC .
NATURE, 1997, 387 (6635) :783-785
[10]   Gamma-ray burst afterglows: effects of radiative corrections and non-uniformity of the surrounding medium [J].
Dai, ZG ;
Lu, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 298 (01) :87-92