Cyclic diguanylate regulates Vibrio cholerae virulence gene expression

被引:206
作者
Tischler, AD
Camilli, A
机构
[1] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
[2] Tufts Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02111 USA
关键词
D O I
10.1128/IAI.73.9.5873-5882.2005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The cyclic dinucleotide second messenger cyclic diguanylate (c-diGMP) has been implicated in regulation of cell surface properties in several bacterial species, including Vibrio cholerae. Expression of genes required for V. cholerae biofilm formation is activated by an increased intracellular c-diGMP concentration. The response regulator VieA, which contains a domain responsible for degradation of c-diGMP, is required to maintain a low concentration of c-diGMP and repress biofilm formation. The VieSAB three-component signal transduction system was, however, originally identified as a regulator of ctxAB, the genes encoding cholera toxin (CT). Here we show that the c-diGMP phosphodiesterase activity of VieA is required to enhance CT production. This regulation occurred at the transcriptional level, and ectopically altering the c-diGMP concentration by expression of diguanylate cyclase or phosphodiesterase enzymes also affected ctxAB transcription. The c-diGMP phosphodiesterase activity of VieA was also required for maximal transcription toxT but did not influence the activity of ToxR or expression of TcpP. Finally, a single amino acid substitution in VieA that increases the intracellular c-diGMP concentration led to attenuation in the infant mouse model of cholera. Since virulence genes including toxT and ctxA are repressed by a high concentration of c-diGMP, while biofilm genes are activated, we suggest that c-diGMP signaling is important for the transition of V. cholerae from the environment to the host.
引用
收藏
页码:5873 / 5882
页数:10
相关论文
共 58 条
[1]   TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP [J].
Beck, NA ;
Krukonis, ES ;
DiRita, VJ .
JOURNAL OF BACTERIOLOGY, 2004, 186 (24) :8309-8316
[2]   ORGANIZATION OF TCP, ACF, AND TOXT GENES WITHIN A TOXT-DEPENDENT OPERON [J].
BROWN, RC ;
TAYLOR, RK .
MOLECULAR MICROBIOLOGY, 1995, 16 (03) :425-439
[3]   BIOCHEMISTRY OF VIBRIO-CHOLERAE VIRULENCE .2. SKIN PERMEABILITY FACTOR/CHOLERA ENTEROTOXIN PRODUCTION IN A CHEMICALLY DEFINED MEDIUM [J].
CALLAHAN, LT ;
RYDER, RC ;
RICHARDSON, SH .
INFECTION AND IMMUNITY, 1971, 4 (05) :611-+
[4]   Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection [J].
Camilli, A ;
Mekalanos, JJ .
MOLECULAR MICROBIOLOGY, 1995, 18 (04) :671-683
[5]   A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains [J].
Champion, GA ;
Neely, MN ;
Brennan, MA ;
DiRita, VJ .
MOLECULAR MICROBIOLOGY, 1997, 23 (02) :323-331
[6]   Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor [J].
Chang, AL ;
Tuckerman, JR ;
Gonzalez, G ;
Mayer, R ;
Weinhouse, H ;
Volman, G ;
Amikam, D ;
Benziman, M ;
Gilles-Gonzalez, MA .
BIOCHEMISTRY, 2001, 40 (12) :3420-3426
[7]   Analysis of ToxR-dependent transcription activation of ompU, the gene encoding a major envelope protein in Vibrio cholerae [J].
Crawford, JA ;
Kaper, JB ;
DiRita, VJ .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :235-246
[8]   Cyclic di-GMP as a bacterial second messenger [J].
D'Argenio, DA ;
Miller, SI .
MICROBIOLOGY-SGM, 2004, 150 :2497-2502
[9]   REGULATORY CASCADE CONTROLS VIRULENCE IN VIBRIO-CHOLERAE [J].
DIRITA, VJ ;
PARSOT, C ;
JANDER, G ;
MEKALANOS, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5403-5407
[10]   Differential expression of the ToxR regulon in classical and El Tor biotypes of Vibrio cholerae is due to biotype-specific control over toxT expression [J].
DiRita, VJ ;
Neely, M ;
Taylor, RK ;
Bruss, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7991-7995