Role of advanced glycation end products in diabetic neuropathy

被引:227
作者
Sugimoto, Kazuhiro [1 ]
Yasujima, Minoru [1 ]
Yagihashi, Soroku [2 ]
机构
[1] Hirosaki Univ, Grad Sch Med, Dept Lab Med, Hirosaki, Aomori 0368562, Japan
[2] Hirosaki Univ, Grad Sch Med, Dept Pathol, Hirosaki, Aomori 0368562, Japan
关键词
diabetic neuropathy; AGEs; oxidative stress; RAGE; CML;
D O I
10.2174/138161208784139774
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Diabetic neuropathy is the commonest form of peripheral neuropathy in the developed countries of the world. In diabetic patients, the presence of peripheral neuropathy increases their risks for developing foot ulceration and subsequent necrosis that necessitates lower limb amputation. Although the precise mechanisms underlying diabetic neuropathy remain unclear, there is evidence that hyperglycemia-induced formation of advanced glycation end products (AGEs) is related to diabetic neuropathy; AGE-modified peripheral nerve myelin is susceptible to phagocytosis by macrophages and contributes to segmental demyelination; modification of major axonal cytoskeletal proteins such as tubulin, neurofilament, and actin by AGEs results in axonal atrophy/degeneration and impaired axonal transport; and glycation of extracellular matrix protein laminin leads to impaired regenerative activity in diabetic neuropathy. Recently, the receptor for AGEs (RAGE) has been found to colocalize with AGEs in diabetic peripheral nerves. This suggests that, in diabetic neuropathy, AGEs and AGE/RAGE interactions induce oxidative stress, result in upregulation of nuclear factor (NF)-kappaB and various NF-kappaB-mediated proinflammatory genes, and exaggerate neurological dysfunction, including altered pain sensation. Additionally, AGE/RAGE-induced oxidative stress further accelerates formation of glycoxidation products such as Nepsilon-(carboxymethyl)lysine and pentosidine. Although new drugs that inhibit the formation of AGEs and block the AGE-RAGE interaction are being studied, no effective treatment modalities against AGE-induced nerve injury are currently available clinically. A therapeutic strategy to prevent and ameliorate diabetic neuropathy using anti-AGE agents needs to be established. In this review, the current issues involved in the role of the glycation process and the potential treatment options for diabetic neuropathy are explored.
引用
收藏
页码:953 / 961
页数:9
相关论文
共 123 条
  • [1] Advanced glycation end products in human optic nerve head
    Amano, S
    Kaji, Y
    Oshika, T
    Oka, T
    Machinami, R
    Nagai, R
    Horiuchi, S
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2001, 85 (01) : 52 - 55
  • [2] ARAI K, 1987, J BIOL CHEM, V262, P16969
  • [3] Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine
    Babaei-Jadidi, R
    Karachalias, N
    Ahmed, N
    Battah, S
    Thornalley, PJ
    [J]. DIABETES, 2003, 52 (08) : 2110 - 2120
  • [4] THE PURIFICATION AND PROPERTIES OF HUMAN-LIVER KETOHEXOKINASE - A ROLE FOR KETOHEXOKINASE AND FRUCTOSE-BISPHOSPHATE ALDOLASE IN THE METABOLIC PRODUCTION OF OXALATE FROM XYLITOL
    BAIS, R
    JAMES, HM
    ROFE, AM
    CONYERS, RAJ
    [J]. BIOCHEMICAL JOURNAL, 1985, 230 (01) : 53 - 60
  • [5] Advanced glycation end products activate endothelium through signal-transduction receptor RAGE - A mechanism for amplification of inflammatory responses
    Basta, G
    Lazzerini, G
    Massaro, M
    Simoncini, T
    Tanganelli, P
    Fu, CF
    Kislinger, T
    Stern, DM
    Schmidt, AM
    De Caterina, R
    [J]. CIRCULATION, 2002, 105 (07) : 816 - 822
  • [6] ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES
    BAYNES, JW
    [J]. DIABETES, 1991, 40 (04) : 405 - 412
  • [7] INCREASED COLLAGEN-LINKED PENTOSIDINE LEVELS AND ADVANCED GLYCOSYLATION END-PRODUCTS IN EARLY DIABETIC NEPHROPATHY
    BEISSWENGER, PJ
    MOORE, LL
    BRINCKJOHNSEN, T
    CURPHEY, TJ
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1993, 92 (01) : 212 - 217
  • [8] Diabetes-associated sustained activation of the transcription factor nuclear factor-κB
    Bierhaus, A
    Schiekofer, S
    Schwaninger, M
    Andrassy, M
    Humpert, PM
    Chen, J
    Hong, M
    Luther, T
    Henle, T
    Klöting, I
    Morcos, M
    Hofmann, M
    Tritschler, H
    Weigle, B
    Kasper, M
    Smith, M
    Perry, G
    Schmidt, AM
    Stern, DM
    Häring, HU
    Schleicher, E
    Nawroth, PP
    [J]. DIABETES, 2001, 50 (12) : 2792 - 2808
  • [9] Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily
    Bierhaus, A
    Haslbeck, KM
    Humpert, PM
    Liliensiek, B
    Dehmer, T
    Morcos, M
    Sayed, AAR
    Andrassy, M
    Schiekofer, S
    Schneider, JG
    Schulz, JB
    Heuss, D
    Neundörfer, B
    Dierl, S
    Huber, J
    Tritschler, H
    Schmidt, AM
    Schwaninger, M
    Haering, HU
    Schleicher, E
    Kasper, M
    Stern, DM
    Arnold, B
    Nawroth, PP
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (12) : 1741 - 1751
  • [10] Advanced glycation end product-induced activation of NF-kappa B is suppressed by alpha-lipoic acid in cultured endothelial cells
    Bierhaus, A
    Chevion, S
    Chevion, M
    Hofmann, M
    Quehenberger, P
    Illmer, T
    Luther, T
    Berentshtein, E
    Tritschler, H
    Muller, M
    Wahl, P
    Ziegler, R
    Nawroth, PP
    [J]. DIABETES, 1997, 46 (09) : 1481 - 1490