Image annotation for conveying automated lung nodule detection results to radiologists

被引:5
作者
Armato, SG [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
computed tomography (CT); computer-aided diagnosis (CAD); lung nodules; image processing; chest radiology;
D O I
10.1016/S1076-6332(03)00116-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives. The author investigated the ability of automated techniques to convey the results of an automated lung nodule detection method for human visualization. Materials and Methods. Automated nodule detection begins with gray-level thresholding techniques to create a segmented lung volume within which nodule candidates are identified. Morphologic and gray-level features are computed for each candidate. To distinguish between candidates that represent actual nodules and those that represent non-nodules, a rule-based scheme is combined with linear discriminant analysis. For output visualization, final detection results are represented as circles around computer-detected structures in a single section in which each structure appears. Consequently, an inappropriate choice of section could result in an actual nodule detected by the computer but not properly indicated to the radiologist, thus reducing the potential positive impact of that detection on the radiologist's decision-making process. Results. The automated nodule detection method achieved 71% sensitivity with 0.5 false positives per section on 38 CT scans; however, when these results were converted to annotations on the images output for human visualization, only 91% of the computer-detected true-positive nodules received annotations that encompassed a portion of the actual nodule. Thus, the "effective sensitivity" of the automated detection method was reduced. Conclusion. The "effective sensitivity" of an automated lung nodule detection system considers the eventual human interaction with system output. Differences between reported computer sensitivity and "effective sensitivity" may be reduced through proper consideration of the assessment of "truth," of the manner in which computer results are scored, and of the complete segmentation of candidates for automated nodule detection.
引用
收藏
页码:1000 / 1007
页数:8
相关论文
共 12 条
[1]   Computerized lung nodule detection: Effect of image annotation schemes for conveying results to radiologists [J].
Armato, SG .
MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 :854-859
[2]   Automated detection of lung nodules in CT scans:: Effect of image reconstruction algorithm [J].
Armato, SG ;
Altman, MB ;
La Rivière, PJ .
MEDICAL PHYSICS, 2003, 30 (03) :461-472
[3]   Automated detection of lung nodules in CT scans: Preliminary results [J].
Armato, SG ;
Giger, ML ;
MacMahon, H .
MEDICAL PHYSICS, 2001, 28 (08) :1552-1561
[4]   Analysis of a three-dimensional lung nodule detection method for thoracic CT scans [J].
Armato, SG ;
Giger, ML ;
MacMahon, H .
MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 :103-109
[5]   Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society [J].
Austin, JHM ;
Muller, NL ;
Friedman, PJ ;
Hansell, DM ;
Naidich, DP ;
RemyJardin, M ;
Webb, WR ;
Zerhouni, EA .
RADIOLOGY, 1996, 200 (02) :327-331
[6]  
Bunch PC, 1977, P SPIE, P124, DOI DOI 10.1117/12.955926
[7]  
Giger M, 1996, RADIOL CLIN N AM, V34, P565
[8]  
Hsieh J., 2003, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Vfirst
[9]  
Johnson R. A., 1992, APPL MULTIVARIATE ST, V4
[10]   Evaluating the performance of detection algorithms in digital mammography [J].
Kallergi, M ;
Carney, GM ;
Gaviria, J .
MEDICAL PHYSICS, 1999, 26 (02) :267-275