Quasi M-convex and L-convex functions - quasiconvexity in discrete optimization

被引:11
作者
Murota, K
Shioura, A [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1138656, Japan
关键词
quasiconvex function; discrete optimization; matroid; base polyhedron;
D O I
10.1016/S0166-218X(02)00468-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce two classes of discrete quasiconvex functions, called quasi M- and L-convex functions, by generalizing the concepts of M- and L-convexity due to Murota (Adv. Math. 124 (1996) 272) and (Math. Programming 83 (1998) 313). We investigate the structure of quasi Mand L-convex functions with respect to level sets, and show that various greedy algorithms work for the minimization of quasi M- and L-convex functions. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:467 / 494
页数:28
相关论文
共 21 条
[1]  
[Anonymous], 1970, CONVEXITY OPTIMIZATI
[2]  
Avriel M., 1988, GEN CONCAVITY
[3]  
Bazaraa M.S., 2013, Nonlinear Programming-Theory and Algorithms, V3rd
[4]  
Favati P, 1990, Ricerca Operativa, V53, P3
[5]   Notes on L-/M-convex functions and the separation theorems [J].
Fujishige, S ;
Murota, K .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :129-146
[6]   LOWER AND UPPER-BOUNDS FOR THE ALLOCATION PROBLEM AND OTHER NONLINEAR OPTIMIZATION PROBLEMS [J].
HOCHBAUM, DS .
MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (02) :390-409
[7]   Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization [J].
Iwata, S ;
Shigeno, M .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) :204-211
[8]   MONOTONE COMPARATIVE STATICS [J].
MILGROM, P ;
SHANNON, C .
ECONOMETRICA, 1994, 62 (01) :157-180
[10]  
Moriguchi S, 2002, IEICE T FUND ELECTR, VE85A, P922