Shelterbelts and windbreaks: Mathematical modeling and computer simulations of turbulent flows

被引:68
作者
Wang, H [1 ]
Takle, ES
Shen, JM
机构
[1] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Agron, Ames, IA 50011 USA
关键词
turbulent flows; aerodynamics; wind engineering; environmental fluid dynamics; porous media flows; heat and moisture transfer; parallel and distributed computing;
D O I
10.1146/annurev.fluid.33.1.549
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Shelterbelts or windbreaks were used for centuries to reduce wind speed, to control heat and moisture transfer and pollutant diffusion, to improve climate and environment, and to increase crop yields; but only within the last few decades have systematic studies considered the aerodynamics and shelter mechanisms of shelterbelts and windbreaks. This review examines recent modeling and numerical simulation studies as well as the mechanisms that control flow and turbulence around shelterbelts and windbreaks. We compare numerical simulations with experimental data and explain the relationships between sheltering effects and the structure of shelterbelts and windbreaks. We discuss how and why the desired effects are achieved by using numerical analysis. This chapter begins with the derivation of a general equation set for porous shelterbelts and windbreaks; the numerical model and simulation procedure are developed; unseparated and separated flows are predicted and characterized; the momentum budget and shelter mechanisms are analyzed; the effects of wind direction, density, width, and three dimensionality of shelterbelt structure on flow and turbulence are systematically described. Recent modeling and simulation of heat flux and evapotranspiration are also summarized. Finally, we discuss the use of highperformance distributed and parallel computing as well as clusters of networked workstations to enhance performance of the model applied to simulations of shelterbelts and windbreaks.
引用
收藏
页码:549 / 586
页数:38
相关论文
共 108 条
[1]  
BAINES WD, 1951, T AM SOC MECH ENG, V76, P467
[2]  
BATES CG, 1911, B FOR SERV USDA, P1
[3]  
BONAN GB, 1996, NCARTN417PLUSSTR
[4]   DEVELOPMENT OF VELOCITY AND SHEAR-STRESS DISTRIBUTIONS IN THE WAKE OF A POROUS SHELTER FENCE [J].
BRADLEY, EF ;
MULHEARN, PJ .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1983, 15 (1-3) :145-156
[5]   WINDBREAK-CROP INTERACTIONS IN THE SAHEL .2. GROWTH-RESPONSE OF MILLET IN SHELTER [J].
BRENNER, AJ ;
JARVIS, PG ;
VANDENBELDT, RJ .
AGRICULTURAL AND FOREST METEOROLOGY, 1995, 75 (04) :235-262
[6]  
BRINGMAN K., 1955, Zeitschrift fur Acker- und Pflanzenbau, V99, P321
[7]  
Caborn J.M., 1965, SHELTERBELTS WINDBRE
[8]  
CABORN JM, 1957, FOR COMM B EDINBURGH, V29
[10]   ON CONVERGENCE OF DISCRETE APPROXIMATIONS TO NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :341-&