Emerging concepts for the dynamical organization of resting-state activity in the brain

被引:1142
作者
Deco, Gustavo [1 ]
Jirsa, Viktor K. [3 ,4 ]
McIntosh, Anthony R. [2 ]
机构
[1] Univ Pompeu Fabra, ICREA, Barcelona 08002, Spain
[2] Univ Toronto, Baycrest Ctr, Rotman Res Inst, Toronto, ON M6A 2E1, Canada
[3] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
[4] CNRS, Theoret Neurosci Grp, Inst Sci Mouvement UMR6233, Marseille, France
关键词
POSITRON-EMISSION-TOMOGRAPHY; FUNCTIONAL CONNECTIVITY; DEFAULT MODE; CEREBRAL-CORTEX; PREFRONTAL CORTEX; STRUCTURAL CONNECTIVITY; NETWORK ANALYSIS; NERVOUS-SYSTEM; GLOBAL SIGNAL; FIELD-THEORY;
D O I
10.1038/nrn2961
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A broad body of experimental work has demonstrated that apparently spontaneous brain activity is not random. At the level of large-scale neural systems, as measured with functional MRI (fMRI), this ongoing activity reflects the organization of a series of highly coherent functional networks. These so-called resting-state networks (RSNs) closely relate to the underlying anatomical connectivity but cannot be understood in those terms alone. Here we review three large-scale neural system models of primate neocortex that emphasize the key contributions of local dynamics, signal transmission delays and noise to the emerging RSNs. We propose that the formation and dissolution of resting-state patterns reflects the exploration of possible functional network configurations around a stable anatomical skeleton.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 85 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
ANDREASEN NC, 1995, AM J PSYCHIAT, V152, P1576
[3]   Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses [J].
Arieli, A ;
Sterkin, A ;
Grinvald, A ;
Aertsen, A .
SCIENCE, 1996, 273 (5283) :1868-1871
[4]   Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion [J].
Assisi, CG ;
Jirsa, VK ;
Kelso, JAS .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[5]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[6]   Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back [J].
Blumenfeld, Barak ;
Bibitchkov, Dmitri ;
Tsodyks, Misha .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2006, 20 (02) :219-241
[7]   Connecting Mean Field Models of Neural Activity to EEG and fMRI Data [J].
Bojak, Ingo ;
Oostendorp, Thom F. ;
Reid, Andrew T. ;
Kotter, Rolf .
BRAIN TOPOGRAPHY, 2010, 23 (02) :139-149
[8]   A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis [J].
Breakspear, M. ;
Roberts, J. A. ;
Terry, J. R. ;
Rodrigues, S. ;
Mahant, N. ;
Robinson, P. A. .
CEREBRAL CORTEX, 2006, 16 (09) :1296-1313
[9]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[10]   Relating macroscopic measures of brain activity to fast, dynamic neuronal interactions [J].
Chawla, D ;
Lumer, ED ;
Friston, KJ .
NEURAL COMPUTATION, 2000, 12 (12) :2805-2821