A note on Laplacian graph eigenvalues

被引:140
作者
Merris, R [1 ]
机构
[1] Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA 94542 USA
关键词
algebraic connectivity; spectral radius;
D O I
10.1016/S0024-3795(98)10148-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph on n vertices. Denote by d(v) the degree of v is an element of V and by m(v) the average of the degrees of the vertices of G adjacent to v. Then b(G) = max(m(v) + d(v): v is an element of V) is an upper bound for the Laplacian spectral radius of G; hence, n - b(G(C)) is a lower bound for the algebraic connectivity of G in terms of the vertex degrees of its complement. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:33 / 35
页数:3
相关论文
共 3 条
[1]  
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI DOI 10.1080/03081088508817681
[2]  
Cao DS, 1998, LINEAR ALGEBRA APPL, V270, P1
[3]  
Li JS, 1997, LINEAR ALGEBRA APPL, V265, P93