Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes

被引:192
作者
Xu, Wu [1 ]
Xu, Kang [2 ]
Viswanathan, Vilayanur V. [1 ]
Towne, Silas A. [1 ]
Hardy, John S. [1 ]
Xiao, Jie [1 ]
Hu, Dehong [3 ]
Wang, Deyu [1 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[2] USA, Sensors & Electron Devices Directorate, Res Lab, Adelphi, MD 20783 USA
[3] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA
关键词
Li-O-2; chemistry; Carbonate electrolyte; Reversibility; Lithium alkylcarbonate; X-ray diffraction; Gas chromatography/mass spectroscopy; NONAQUEOUS ELECTROLYTES; BATTERIES; OPTIMIZATION;
D O I
10.1016/j.jpowsour.2011.06.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li-O-2 chemistry in nonaqueous liquid carbonate electrolytes and the underlying reason for its limited reversibility was systematically investigated. X-ray diffraction data showed that regardless of discharge depth lithium alkylcarbonates (lithium propylenedicarbonate (LPDC), or lithium ethylenedicarbonate (LEDC), with other related derivatives) and lithium carbonate (Li2CO3) are constantly the main discharge products, while lithium peroxide (Li2O2) or lithium oxide (Li2O) is hardly detected. These lithium alkylcarbonates are generated from the reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. More significantly, in situ gas chromatography/mass spectroscopy analysis revealed that Li2CO3 and Li2O cannot be oxidized even when charged to 4.6V vs. Li/Li+, while LPDC, LEDC and Li2O2 are readily oxidized, with CO2 and CO released from LPDC and LEDC and O-2 evolved from Li2O2. Therefore, the apparent reversibility of Li-O-2 chemistry in an organic carbonate-based electrolyte is actually an unsustainable process that consists of (1) the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharging and (2) the subsequent oxidation of these same alkylcarbonates during charging. Therefore, a stable electrolyte that does not lead to an irreversible by-product formation during discharging and charging is necessary for truly rechargeable Li-O-2 batteries. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9631 / 9639
页数:9
相关论文
共 22 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]  
Afanas'ev I.B., 1989, SUPEROXIDE ION CHEM, V1
[3]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[4]   THE ELECTROCHEMICAL-BEHAVIOR OF SELECTED POLAR AROTIC SYSTEMS [J].
AURBACH, D ;
GOTTLIEB, H .
ELECTROCHIMICA ACTA, 1989, 34 (02) :141-156
[5]   Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1370-1374
[6]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[7]   An O2 cathode for rechargeable lithium batteries:: The effect of a catalyst [J].
Debart, Aurelie ;
Bao, Jianli ;
Armstrong, Graham ;
Bruce, Peter G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1177-1182
[8]   Rechargeable Lithium/TEGDME-LiPF6/O2 Battery [J].
Laoire, Cormac O. ;
Mukerjee, Sanjeev ;
Plichta, Edward J. ;
Hendrickson, Mary A. ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A302-A308
[9]   Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications [J].
Laoire, Cormac O. ;
Mukerjee, Sanjeev ;
Abraham, K. M. ;
Plichta, Edward J. ;
Hendrickson, Mary A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :20127-20134
[10]  
Linden D., 2001, Handbook of Batteries