Gravitational demise of cold degenerate stars

被引:9
作者
Adams, FC [1 ]
Laughlin, G
Mbonye, M
Perry, MJ
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
来源
PHYSICAL REVIEW D | 1998年 / 58卷 / 08期
关键词
D O I
10.1103/PhysRevD.58.083003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the long term fate and evolution of cold degenerate stars under the action of gravity alone. Although such stars cannot emit radiation through the Hawking mechanism, the wave function of the star will contain a small admixture of black hole states. These black hole states will emit radiation and hence the star can lose its mass energy in the long term. We discuss the allowed range of possible degenerate stellar evolution within this framework. [S0556-2821(98)00222-7].
引用
收藏
页数:7
相关论文
共 21 条
[1]   A dying universe: The long-term fate and evolution of astrophysical objects [J].
Adams, FC ;
Laughlin, G .
REVIEWS OF MODERN PHYSICS, 1997, 69 (02) :337-372
[2]  
Birrell N. D., 1982, Quantum fields in curved space
[3]  
CHANDRASEKHAR S, 1939, STELLAR STRUCTURE
[4]   EFFECTS OF PROTON DECAY ON THE COSMOLOGICAL FUTURE [J].
DICUS, DA ;
LETAW, JR ;
TEPLITZ, DC ;
TEPLITZ, VL .
ASTROPHYSICAL JOURNAL, 1982, 252 (01) :1-9
[5]   CLASSICAL AND QUANTUM SCATTERING-THEORY FOR LINEAR SCALAR FIELDS ON THE SCHWARZSCHILD METRIC .1. [J].
DIMOCK, J ;
KAY, BS .
ANNALS OF PHYSICS, 1987, 175 (02) :366-426
[6]   TIME WITHOUT END - PHYSICS AND BIOLOGY IN AN OPEN UNIVERSE [J].
DYSON, FJ .
REVIEWS OF MODERN PHYSICS, 1979, 51 (03) :447-460
[7]   OBSERVABLE GRAVITATIONALLY INDUCED BARYON DECAY [J].
ELLIS, J ;
HAGELIN, JS ;
NANOPOULOS, DV ;
TAMVAKIS, K .
PHYSICS LETTERS B, 1983, 124 (06) :484-490
[8]   THE COLDEST NEUTRON STAR [J].
FEINBERG, G .
PHYSICAL REVIEW D, 1981, 23 (12) :3075-3075
[9]   ACTION INTEGRALS AND PARTITION-FUNCTIONS IN QUANTUM GRAVITY [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2752-2756
[10]   PARTICLE CREATION BY BLACK-HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) :199-220