Speech enhancement by MAP spectral amplitude estimation using a super-Gaussian speech model

被引:235
作者
Lotter, T [1 ]
Vary, P
机构
[1] Rhein Westfal TH Aachen Technol, Inst Commun Syst & Data Proc, D-52056 Aachen, Germany
[2] Siemens Audiol Engn Grp, D-91058 Erlangen, Germany
关键词
speech enhancement; MAP estimation; speech model;
D O I
10.1155/ASP.2005.1110
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the superGaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.
引用
收藏
页码:1110 / 1126
页数:17
相关论文
共 30 条