Ranking and scoring using empirical risk minimization

被引:30
作者
Clémençon, S
Lugosi, G
Vayatis, N
机构
[1] Univ Paris 10, MODALX, F-92001 Nanterre, France
[2] Univ Pompeu Fabra, Dept Econ, Barcelona 08005, Spain
[3] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris, France
来源
LEARNING THEORY, PROCEEDINGS | 2005年 / 3559卷
关键词
D O I
10.1007/11503415_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general model is proposed for studying ranking problems. We investigate learning methods based on empirical minimization of the natural estimates of the ranking risk. The empirical estimates are of the form of a U-statistic. Inequalities from the theory of U-statistics and U-processes are used to obtain performance bounds for the empirical risk minimizers. Convex risk minimization methods are also studied to give a theoretical framework for ranking algorithms based on boosting and support vector machines. Just like in binary classification, fast rates of convergence are achieved under certain noise assumption. General sufficient conditions are proposed in several special cases that guarantee fast rates of convergence.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 23 条