Electronic dielectric constants of insulators calculated by the polarization method

被引:78
作者
Bernardini, F [1 ]
Fiorentini, V [1 ]
机构
[1] Univ Cagliari, Dipartimento Fis, Ist Nazl Fis Mat, I-09042 Monserrato, CA, Italy
来源
PHYSICAL REVIEW B | 1998年 / 58卷 / 23期
关键词
D O I
10.1103/PhysRevB.58.15292
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss a nonperturbative, technically straightforward, easy-to-use, and computationally affordable method, based on polarization theory, for the calculation of the electronic dielectric constant of insulating solids at the first-principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN, AlN, BeO, LiF, PbTiO3, and CaTiO3. The predicted epsilon(infinity)'s agree well with those given by density-functional perturbation theory (the reference theoretical treatment), and they are generally within less than 10% of experiment. [S0163-1829(98)09739-6].
引用
收藏
页码:15292 / 15295
页数:4
相关论文
共 30 条
  • [1] INFRARED LATTICE VIBRATION OF VAPOUR-GROWN AIN
    AKASAKI, I
    HASHIMOTO, M
    [J]. SOLID STATE COMMUNICATIONS, 1967, 5 (11) : 851 - +
  • [2] GREEN-FUNCTION APPROACH TO LINEAR RESPONSE IN SOLIDS
    BARONI, S
    GIANNOZZI, P
    TESTA, A
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (18) : 1861 - 1864
  • [3] Macroscopic polarization and band offsets at nitride heterojunctions
    Bernardini, F
    Fiorentini, V
    [J]. PHYSICAL REVIEW B, 1998, 57 (16): : R9427 - R9430
  • [4] Polarization-based calculation of the dielectric tensor of polar crystals
    Bernardini, F
    Fiorentini, V
    Vanderbilt, D
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (20) : 3958 - 3961
  • [5] Bernardini F, 1997, MATER RES SOC SYMP P, V449, P923
  • [6] BOER KW, 1990, SURVEY SEMICONDUCTOR
  • [7] Ceperley D M, 1980, PHYS REV LETT, V45, P556
  • [8] SPECIAL POINTS IN BRILLOUIN ZONE
    CHADI, DJ
    COHEN, ML
    [J]. PHYSICAL REVIEW B, 1973, 8 (12): : 5747 - 5753
  • [9] VALENCE-BAND OFFSETS AT STRAINED SI/GE INTERFACES
    COLOMBO, L
    RESTA, R
    BARONI, S
    [J]. PHYSICAL REVIEW B, 1991, 44 (11): : 5572 - 5579
  • [10] Dreizler R.M., 1990, Density Functional Theory