Fractional diffusion and fractional heat equation

被引:68
作者
Angulo, JM
Ruiz-Medina, MD
Anh, VV
Grecksch, W
机构
[1] Univ Granada, Dept Stat & Operat Res, E-18071 Granada, Spain
[2] Queensland Univ Technol, Ctr Stat Sci & Ind Math, Brisbane, Qld 4001, Australia
[3] Univ Halle Wittenberg, Inst Stochast, D-06120 Halle, Germany
关键词
diffusion processes; stochastic heat equation; Bessel potential; Riesz potential;
D O I
10.1017/S0001867800010478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a fractional heat equation, where the diffusion operator is the composition of the Bessel and Riesz potentials. Sharp bounds are obtained for the variance of the spatial and temporal increments of the solution. These bounds establish the degree of singularity of the sample paths of the solution. In the case of unbounded spatial domain, a solution is formulated in terms of the Fourier transform of its spatially and temporally homogeneous Green function. The spectral density of the resulting solution is then obtained explicitly. The result implies that the solution of the fractional heat equation may possess spatial long-range dependence asymptotically.
引用
收藏
页码:1077 / 1099
页数:23
相关论文
共 27 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[3]  
ANGULO JM, 1999, UNPUB GREENS FUNCTIO
[4]   Possible long-range dependence in fractional random fields [J].
Anh, VV ;
Angulo, JM ;
Ruiz-Medina, MD .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 80 (1-2) :95-110
[5]  
ANH VV, 1999, J STAT PLAN INFER, V80, P1
[6]  
Beran J., 1992, STAT SCI, V7, P404, DOI [10.1214/ss/1177011122, DOI 10.1214/SS/1177011122]
[7]   STOCHASTIC INTEGRALS IN PLANE [J].
CAIROLI, R ;
WALSH, JB .
ACTA MATHEMATICA, 1975, 134 (1-2) :111-183
[8]  
Dautray R., 1985, MATH ANAL NUMERICAL, V2
[9]  
Dautray R., 1985, MATH ANAL NUMERICAL, V5
[10]  
DAUTRAY R, 1985, MATH ANAL NUMERICAL, V3