ε-Consistent equilibrium in repeated games

被引:5
作者
Lehrer, E [1 ]
Sorin, S
机构
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Ecole Polytech, Lab Econometr, F-75005 Paris, France
[3] Univ Paris 10, UFR SEGMI, MODALX, F-92001 Nanterre, France
关键词
D O I
10.1007/s001820050069
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce the concept of epsilon-consistent equilibrium where each player plays a epsilon-best response after every history reached with positive probability. In particular, an epsilon-consistent equilibrium induces an epsilon-equilibrium in any subgame reached along the play path. The existence of epsilon-consistent equilibrium is examined in various repeated games. The main result is the existence in stochastic games with absorbing states.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1990, GAME THEORY APPL, DOI DOI 10.1016/B978-0-12-370182-4.50007-6
[2]  
Aumann R J., 1995, Repeated games with incomplete information
[3]   BIG MATCH [J].
BLACKWELL, D ;
FERGUSON, TS .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (01) :159-+
[4]  
Blackwell D., 1956, PAC J MATH, V6, P1, DOI [DOI 10.2140/PJM.1956.6.1, 10.2140/pjm.1956.6.1]
[5]   RATIONAL LEARNING LEADS TO NASH EQUILIBRIUM [J].
KALAI, E ;
LEHRER, E .
ECONOMETRICA, 1993, 61 (05) :1019-1045
[6]   REPEATED GAMES WITH ABSORBING STATES [J].
KOHLBERG, E .
ANNALS OF STATISTICS, 1974, 2 (04) :724-738
[7]  
Mertens J.-F., 1981, International Journal of Game Theory, V10, P53, DOI 10.1007/BF01769259
[8]  
MONDERER D, 1996, MATH OPER RES, V21, P697
[9]  
NOWAK AS, 1991, STOCHASTIC GAMES REL, P127
[10]  
Radner R, 1986, CONTRIBUTIONS MATH E, P387