Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles

被引:97
作者
Devalapally, Harikrishna [1 ]
Duan, Zhenfeng [2 ]
Seiden, Michael V. [2 ]
Amiji, Mansoor M. [1 ]
机构
[1] Northeastern Univ, Dept Pharmaceut Sci, Sch Pharm, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp, Dept Hematol & Oncol, Boston, MA 02114 USA
关键词
D O I
10.1158/1078-0432.CCR-07-4973
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To modulate intracellular ceramide levels and lower the apoptotic threshold in multidrug-resistant ovarian adenocarcinoma, we have examined the efficacy and preliminary safety of tamoxifen coadministration with paclitaxel in biodegradable poly(ethylene oxide) modified poly (epsilon-caprolactone) (PEO-PCL) nanoparticles. Experimental Design: In vitro cytotoxicity and proapoptotic activity of paclitaxel and tamoxifen, either as single agent or in combination, was examined in wild-type (SKOV3) and MDR-1-positive (SKOV3(TR)) human ovarian adenocarcinoma cells. Subcutaneous SKOV3 and SKOV3TR xenografts were established in female nu/nu mice, and this model was used to evaluate the antitumor efficacy and preliminary safety. Paclitaxel (20 mg/kg) and tamoxifen (70 mg/kg) were administered i.v. either as a single agent or in combination in aqueous solution and in PEO-PCL nanoparticles. Results: In vitro cytotoxicity results showed that administration of paclitaxel and tamoxifen in combination lowered the IC50 of paclitaxel by 10-fold in SKOV3 cells and by >3-fold in SKOV3TR cells. The combination paclitaxel/tamoxifen co-therapy showed even more pronounced effect when administered in nanoparticle formulations. Upon i.v. administration of paclitaxel/tamoxifen combination in PEO-PCL nanoparticle formulations, significant enhancement in antitumor efficacy was observed. Furthermore, the combination paclitaxel/tamoxifen therapy did not induce any acute toxicity as measured by body weight changes, blood cell counts, and hepatotoxicity. Conclusions: The results of this study show that combination of paclitaxel and tamoxifen in biodegradable PEO-PCL nanoparticles can serve as an effective clinically translatable strategy to overcome multidrug resistance in ovarian cancer.
引用
收藏
页码:3193 / 3203
页数:11
相关论文
共 42 条
[1]   Tamoxifen inhibits acidification in cells independent of the estrogen receptor [J].
Altan, N ;
Chen, Y ;
Schindler, M ;
Simon, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) :4432-4437
[2]  
Bhadra D, 2002, PHARMAZIE, V57, P5
[3]   P-GLYCOPROTEIN, MULTIDRUG-RESISTANCE AND TUMOR PROGRESSION [J].
BRADLEY, G ;
LING, V .
CANCER AND METASTASIS REVIEWS, 1994, 13 (02) :223-233
[4]   MECHANISM OF MULTIDRUG RESISTANCE [J].
BRADLEY, G ;
JURANKA, PF ;
LING, V .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 948 (01) :87-128
[5]   A mechanism for tamoxifen-mediated inhibition of acidification [J].
Chen, Y ;
Schindler, M ;
Simon, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18364-18373
[6]   COMPUTERIZED QUANTITATION OF SYNERGISM AND ANTAGONISM OF TAXOL, TOPOTECAN, AND CISPLATIN AGAINST HUMAN TERATOCARCINOMA CELL-GROWTH - A RATIONAL APPROACH TO CLINICAL PROTOCOL DESIGN [J].
CHOU, TC ;
MOTZER, RJ ;
TONG, YZ ;
BOSL, GJ .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1994, 86 (20) :1517-1524
[7]   QUANTITATIVE-ANALYSIS OF DOSE-EFFECT RELATIONSHIPS - THE COMBINED EFFECTS OF MULTIPLE-DRUGS OR ENZYME-INHIBITORS [J].
CHOU, TC ;
TALALAY, P .
ADVANCES IN ENZYME REGULATION, 1984, 22 :27-55
[8]   Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model [J].
Devalapally, Harikrishna ;
Shenoy, Dinesh ;
Little, Steven ;
Langer, Robert ;
Amiji, Mansoor .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2007, 59 (04) :477-484
[9]  
Duan ZF, 2004, MOL CANCER THER, V3, P833
[10]   TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line [J].
Duan, ZF ;
Feller, AJ ;
Toh, HC ;
Makastorsis, T ;
Seiden, MV .
GENE, 1999, 229 (1-2) :75-81