The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway

被引:451
作者
Matusova, R
Rani, K
Verstappen, FWA
Franssen, MCR
Beale, MH
Bouwmeester, HJ [1 ]
机构
[1] Plant Res Int, NL-6700 AA Wageningen, Netherlands
[2] Slovak Acad Sci, Inst Plant Genet & Biotechnol, Nitra, Slovakia
[3] Wageningen Univ, Organ Chem Lab, NL-6703 HB Wageningen, Netherlands
[4] Rothamsted Res, Harpenden AL5 2JQ, Herts, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1104/pp.105.061382
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate- induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.
引用
收藏
页码:920 / 934
页数:15
相关论文
共 60 条
[1]   Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J].
Akiyama, K ;
Matsuzaki, K ;
Hayashi, H .
NATURE, 2005, 435 (7043) :824-827
[2]  
[Anonymous], 2002, TRENDS PLANT SCI, DOI DOI 10.1016/S1360-1385(01)02187-2
[3]   Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel [J].
Ben-Amotz, A ;
Fishler, R .
FOOD CHEMISTRY, 1998, 62 (04) :515-520
[4]   The light-hyperresponsive high pigment-2dg mutation of tomato:: alterations in the fruit metabolome [J].
Bino, RJ ;
de Vos, CHR ;
Lieberman, M ;
Hall, RD ;
Bovy, A ;
Jonker, HH ;
Tikunov, Y ;
Lommen, A ;
Moco, S ;
Levin, I .
NEW PHYTOLOGIST, 2005, 166 (02) :427-438
[5]   Regulation of carotenoid biosynthesis in plants:: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors [J].
Botella-Pavía, P ;
Besumbes, O ;
Phillips, MA ;
Carretero-Paulet, L ;
Boronat, A ;
Rodríguez-Concepción, M .
PLANT JOURNAL, 2004, 40 (02) :188-199
[6]   Secondary metabolite signalling in host-parasitic plant interactions [J].
Bouwmeester, HJ ;
Matusova, R ;
Sun, ZK ;
Beale, MH .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (04) :358-364
[7]  
BUTLER LG, 1995, INSIGHTS ALLELOPATHY, P158
[8]   Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado [J].
Chernys, JT ;
Zeevaart, JAD .
PLANT PHYSIOLOGY, 2000, 124 (01) :343-353
[9]  
Chittapur BM, 2001, ALLELOPATHY J, V8, P147
[10]   GERMINATION STIMULANTS .2. STRUCTURE OF STRIGOL - POTENT SEED-GERMINATION STIMULANT FOR WITCHWEED (STRIGA-LUTEA LOUR) [J].
COOK, CE ;
COGGON, P ;
MCPHAIL, AT ;
WALL, ME ;
WHICHARD, LP ;
EGLEY, GH ;
LUHAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1972, 94 (17) :6198-&