The optimized order 2 method - Application to convection-diffusion problems

被引:57
作者
Japhet, C
Nataf, F
Rogier, F
机构
[1] Univ Paris 13, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
[2] Ecole Polytech, CMAP, CNRS, UMR 7641, F-91128 Palaiseau, France
[3] ONERA, CERT, DTIM, M2SN, F-31055 Toulouse, France
关键词
domain decomposition; optimized order 2 method; absorbing boundary conditions; convection-diffusion problems;
D O I
10.1016/S0167-739X(00)00072-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an iterative, non-overlapping domain decomposition method for solving the convection-diffusion equation. A reformulation of the problem leads to an equivalent problem, where the unknowns are on the boundary of the subdomains [F. Nataf, F. Rogier, E. de Sturler, in: A. Sequeira (Ed.), Navier-Stokes Equations on Related Nonlinear Analysis, Plenum Press, New York, 1995, pp. 307-377]. The solving of this interface problem by a Krylov type algorithm [Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996] is done by the solving of independent problems in each subdomain, so it permits to use efficiently parallel computation. In order to have very fast convergence, we use differential interface conditions of order 1 in the normal direction and of order 2 in the tangential direction to the interface, which are optimized approximations of absorbing boundary conditions [C. Japhet, Methode de decomposition de domaine et conditions aux limites artificielles en mecanique des fluides: methode optimisee d'Ordre 2, These de Doctoral, Universite Paris XIII, 1998; F. Nataf, F. Rogier, M-3 AS 5 (1) (1995) 67-93]. Numerical tests illustrate the efficiency of the method. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 16 条
[1]  
BOREL C, 1992, P 1 EUR CFD C BRUSS
[2]  
CARLENZOLI C, 1995, IMA VOLUMES MATH ITS, V75, P165
[3]  
CHARTON P, 1991, CR ACAD SCI I-MATH, V313, P623
[4]  
DESPRES B, 1990, CR ACAD SCI I-MATH, V311, P313
[5]  
ENGQUIST B, 1977, MATH COMPUT, V31, P629, DOI 10.1090/S0025-5718-1977-0436612-4
[6]  
HALPERN L, 1986, MATH COMPUT, V46, P425, DOI 10.1090/S0025-5718-1986-0829617-8
[7]  
Japhet C., 1998, THESIS U PARIS 13, V13
[8]  
JAPHET C, 1998, AMS CONT MATH, V218, P279
[9]  
JAPHET C, 1997, DOMAIN DECOMPOSITION, P382
[10]  
LIONS PL, 1989, P 3 INT S DOM DEC ME, P202