A comparative genomic analysis of the cow, pig, and human CFTR genes identifies potential intronic regulatory elements

被引:11
作者
Williams, SH [1 ]
Mouchel, N [1 ]
Harris, A [1 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Paediat Mol Genet, Oxford OX3 9DS, England
关键词
D O I
10.1016/S0888-7543(03)00089-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The identification of sequences within noncoding regions of genes that are conserved between several species may indicate potential regulatory elements. This is important for genes with complex control mechanisms such as the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR demonstrates similar patterns of temporal and spatial expression inhuman and sheep, but these differ significantly in mouse cftr. The complete sheep CFTR sequence is unavailable so we annotated BAC clones encompassing the CFTR gene from two other artiodactyl species (cow and pig) for comparative sequence analysis. Regions of introns 2, 3, 10, 17a, 18, and 21 and 3' flanking sequence corresponding to human CFTR DNase I hypersensitive sites (DHS) showed high homology in the cow and pig. Cross-species sequence conservation also enabled finer mapping of other human DHS, including those in introns 1, 16, and 20. Additional potential regulatory elements not associated with human DHS were also identified. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:628 / 639
页数:12
相关论文
共 15 条
[1]  
CHOU JL, 1991, J BIOL CHEM, V266, P24471
[2]   Genomic sequence allalysis of Fugu rubripes CFTR and flanking genes in a 60 kb region conserving synteny with 800 kb of human chromosome 7 [J].
Davidson, H ;
Taylor, MS ;
Doherty, A ;
Boyd, AC ;
Porteous, DJ .
GENOME RESEARCH, 2000, 10 (08) :1194-1203
[3]   Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes [J].
Ellsworth, RE ;
Jamison, DC ;
Touchman, JW ;
Chissoe, SL ;
Maduro, VVB ;
Bouffard, GG ;
Dietrich, NL ;
Beckstrom-Sternberg, SM ;
Iyer, LM ;
Weintraub, LA ;
Cotton, M ;
Courtney, L ;
Edwards, J ;
Maupin, R ;
Ozersky, P ;
Rohlfing, T ;
Wohldmann, P ;
Miner, T ;
Kemp, K ;
Kramer, J ;
Korf, I ;
Pepin, K ;
Antonacci-Fulton, L ;
Fulton, RS ;
Minx, P ;
Hillier, LW ;
Wilson, RK ;
Waterston, RH ;
Miller, W ;
Green, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (03) :1172-1177
[4]  
KOH J, 1993, J BIOL CHEM, V268, P15912
[5]   BASAL EXPRESSION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR GENE IS DEPENDENT ON PROTEIN-KINASE-A ACTIVITY [J].
MCDONALD, RA ;
MATTHEWS, RP ;
IDZERDA, RL ;
MCKNIGHT, GS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7560-7564
[6]   Alternative 5′ exons of the CFTR gene show developmental regulation [J].
Mouchel, N ;
Broackes-Carter, F ;
Harris, A .
HUMAN MOLECULAR GENETICS, 2003, 12 (07) :759-769
[7]   The sheep genome contributes to localization of control elements in a human gene with complex regulatory mechanisms [J].
Mouchel, N ;
Tebbutt, SJ ;
Broackes-Carter, FC ;
Sahota, V ;
Summerfield, T ;
Gregory, DJ ;
Harris, A .
GENOMICS, 2001, 76 (1-3) :9-13
[8]   Analysis of DNase-I-hypersensitive sites at the 3′ end of the cystic fibrosis transmembrane conductance regulator gene (CFTR) [J].
Nuthall, HN ;
Moulin, DS ;
Huxley, C ;
Harris, A .
BIOCHEMICAL JOURNAL, 1999, 341 :601-611
[9]   TRANSCRIPTION OF CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR REQUIRES A CCAAT-LIKE ELEMENT FOR BOTH BASAL AND CAMP-MEDIATED REGULATION [J].
PITTMAN, N ;
SHUE, GL ;
LELEIKO, NS ;
WALSH, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28848-28857
[10]   An element in intron 1 of the CFTR gene augments intestinal expression in vivo [J].
Rowntree, RK ;
Vassaux, G ;
McDowell, TL ;
Howe, S ;
McGuigan, A ;
Phylactides, M ;
Huxley, C ;
Harris, A .
HUMAN MOLECULAR GENETICS, 2001, 10 (14) :1455-1464