Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases -: A mutational analysis of the functionally important sites in the S2+ and S2- splice variants

被引:86
作者
Wagner, LE
Li, WH
Yule, DI
机构
[1] Univ Rochester, Dept Physiol & Pharmacol, Rochester, NY 14642 USA
[2] Univ Texas, SW Med Ctr, Dept Cell Biol, Dallas, TX 75390 USA
[3] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M306270200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inositol 1,4,5-trisphosphate receptors (InsP(3)R) are the major route of intracellular calcium release in eukaryotic cells and as such are pivotal for stimulation of Ca2+-dependent effectors important for numerous physiological processes. Modulation of this release has important consequences for defining the particular spatio-temporal characteristics of Ca2+ signals. In this study, regulation of Ca2+ release by phosphorylation of type-1 InsP(3)R (InsP(3)R-1) by cAMP (PKA)- and cGMP (PKG)-dependent protein kinases was investigated in the two major splice variants of InsP(3)R-1. InsP(3)R-1 was expressed in DT-40 cells devoid of endogenous InsP3R. In cells expressing the neuronal, S2+ splice variant of the InsP(3)R-1, Ca2+ release was markedly enhanced when either PKA or PKG was activated. The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca2+ release was abolished when serine 1755 was mutated to alanine (S1755A) but was unaffected by a similar mutation of serine 1589 (S1589A). These data demonstrate that Ser-1755 is the functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP(3)R-1. Activation of PKA also resulted in potentiated Ca2+ release in cells expressing the non-neuronal, S2+ splice variant of the InsP(3)R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP(3)R-1 mutants. The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated and contribute to the functional effect. Activation of PKG had no effect on Ca2+ release in cells expressing the S2- variant of InsP(3)R-1. Collectively, these data indicate that phosphoregulation of InsP(3)R-1 has dramatic effects on Ca2+ release and defines the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues.
引用
收藏
页码:45811 / 45817
页数:7
相关论文
共 52 条
[1]   Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Iβ [J].
Ammendola, A ;
Geiselhöringer, A ;
Hofmann, F ;
Schlossmann, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :24153-24159
[2]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[3]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[4]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[5]   Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels [J].
Boehning, D ;
Mak, DOD ;
Foskett, JK ;
Joseph, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (17) :13509-13512
[6]   Calcium signalling - an overview [J].
Bootman, MD ;
Collins, TJ ;
Peppiatt, CM ;
Prothero, LS ;
MacKenzie, L ;
De Smet, P ;
Travers, M ;
Tovey, SC ;
Seo, JT ;
Berridge, MJ ;
Ciccolini, F ;
Lipp, P .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2001, 12 (01) :3-10
[7]   Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells -: A mechanism for the synergistic effects of cAMP on Ca2+ signaling [J].
Bruce, JIE ;
Shuttleworth, TJ ;
Giovannucci, DR ;
Yule, DI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1340-1348
[8]   Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation [J].
Cavallini, L ;
Coassin, M ;
Borean, A ;
Alexandre, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) :5545-5551
[9]  
COLBRAN JL, 1992, J BIOL CHEM, V267, P9589
[10]   INOSITOL 1,4,5-TRISPHOSPHATE RECEPTORS - DISTINCT NEURONAL AND NONNEURONAL FORMS DERIVED BY ALTERNATIVE SPLICING DIFFER IN PHOSPHORYLATION [J].
DANOFF, SK ;
FERRIS, CD ;
DONATH, C ;
FISCHER, GA ;
MUNEMITSU, S ;
ULLRICH, A ;
SNYDER, SH ;
ROSS, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (07) :2951-2955