Existence and stability of even-dimensional asymptotically de Sitter spaces

被引:59
作者
Anderson, MT [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
ANNALES HENRI POINCARE | 2005年 / 6卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00023-005-0224-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new proof of Friedrich's theorem on the existence and stability of asymptotically de Sitter spaces in 3 + 1 dimensions is given, which extends to all even dimensions. In addition we characterize the possible limits of spaces which are globally asymptotically de Sitter, to the past and future.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 22 条
[1]  
AHLINHAC S, 1984, INVENT MATH, V75, P189
[2]  
ANDERSON M, IN PRESS ADV THEOR M
[3]   Boundary regularity, uniqueness and nonuniqueness for AH Einstein metrics on 4-manifolds [J].
Anderson, MT .
ADVANCES IN MATHEMATICS, 2003, 179 (02) :205-249
[4]   ON HYPERBOLOIDAL CAUCHY DATA FOR VACUUM EINSTEIN EQUATIONS AND OBSTRUCTIONS TO SMOOTHNESS OF SCRI [J].
ANDERSSON, L ;
CHRUSCIEL, PT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (03) :533-568
[5]   Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence [J].
de Haro, S ;
Skenderis, K ;
Solodukhin, SN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) :595-622
[6]  
Fefferman C., 1984, ASTERISQUE, P95
[7]  
Friedrich H, 2002, LECT NOTES PHYS, V604, P1
[9]  
FRIEDRICH H, 1991, J DIFFER GEOM, V34, P275
[10]  
Friedrich H., 1986, Journal of Geometry and Physics, V3, P101, DOI 10.1016/0393-0440(86)90004-5