Thermal preference of Caenorhabditis elegans:: a null model and empirical tests

被引:57
作者
Anderson, Jennifer L.
Albergotti, Lori
Proulx, Stephen
Peden, Colin
Huey, Raymond B.
Phillips, Patrick C. [1 ]
机构
[1] Univ Oregon, Ctr Ecol & Evolutionary Biol, Eugene, OR 97402 USA
[2] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA
[3] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[4] Univ Florida, Dept Zool, Gainesville, FL 32611 USA
关键词
Caenorhabditis elegans; diffusion model; natural variation; null model; thermal gradient; thermal preference;
D O I
10.1242/jeb.007351
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The preferred body temperature of ectotherms is typically inferred from the observed distribution of body temperatures in a laboratory thermal gradient. For very small organisms, however, that observed distribution might misrepresent true thermal preferences. Tiny ectotherms have limited thermal inertia, and so their body temperature and speed of movement will vary with their position along the gradient. In order to separate the direct effects of body temperature on movement from actual preference behaviour on a thermal gradient, we generate a null model ( i. e. of non-thermoregulating individuals) of the spatial distribution of ectotherms on a thermal gradient and test the model using parameter values estimated from the movement of nematodes ( Caenorhabditis elegans) at fixed temperatures and on a thermal gradient. We show that the standard lab strain N2, which is widely used in thermal gradient studies, avoids high temperature but otherwise does not exhibit a clear thermal preference, whereas the Hawaiian natural isolate CB4856 shows a clear preference for cool temperatures (similar to 17 degrees C). These differences are not influenced substantially by changes in the starting position of worms in the gradient, the natal temperature of individuals or the presence and physiological state of bacterial food. These results demonstrate the value of an explicit null model of thermal effects and highlight problems in the standard model of C. elegans thermotaxis, showing the value of using natural isolates for tests of complex natural behaviours.
引用
收藏
页码:3107 / 3116
页数:10
相关论文
共 70 条
[1]   Behavioral degradation under mutation accumulation in Caenorhabditis elegans [J].
Ajie, BC ;
Estes, S ;
Lynch, M ;
Phillips, PC .
GENETICS, 2005, 170 (02) :655-660
[2]  
Angilletta MJ, 2002, J THERM BIOL, V27, P199, DOI 10.1016/S0306-4565(01)00084-5
[3]  
BEITINGER TL, 1979, AM ZOOL, V19, P319
[4]   THERMAL RELATIONS OF SOME AUSTRALIAN SKINKS (SAURIA, SCINCIDAE) [J].
BENNETT, AF ;
JOHNALDER, H .
COPEIA, 1986, (01) :57-64
[5]  
Berg H. C., 1984, Random Walks in Biology
[6]   A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans [J].
Biron, David ;
Shibuya, Mayumi ;
Gabel, Christopher ;
Wasserman, Sara M. ;
Clark, Damon A. ;
Brown, Adam ;
Sengupta, Piali ;
Samuel, Aravinthan D. T. .
NATURE NEUROSCIENCE, 2006, 9 (12) :1499-1505
[7]   An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta [J].
Blouin-Demers, G ;
Weatherhead, PJ .
JOURNAL OF ANIMAL ECOLOGY, 2001, 70 (06) :1006-1013
[8]  
BRENNER S, 1974, GENETICS, V77, P71
[9]   LIFE-CYCLE OF NEMATODE CAENORHABDITIS-ELEGANS .1. WILD-TYPE GROWTH AND REPRODUCTION [J].
BYERLY, L ;
CASSADA, RC ;
RUSSELL, RL .
DEVELOPMENTAL BIOLOGY, 1976, 51 (01) :23-33
[10]   The LIM homeobox gene ceh-14 confers thermosensory function to the AFD neurons in Caenorhabditis elegans [J].
Cassata, G ;
Kagoshima, H ;
Andachi, Y ;
Kohara, Y ;
Dürrenberger, MB ;
Hall, DH ;
Bürglin, TR .
NEURON, 2000, 25 (03) :587-597