Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes

被引:92
作者
Allam, Nageh K. [1 ]
Grimes, Craig A. [2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Photon Fuels LLC, State Coll, PA 16803 USA
关键词
Anodization; Cu2O; pH; Chloride; Fluoride; Morphology; Annealing; NANOTUBE ARRAYS; PHOTOELECTROCHEMICAL PROPERTIES; CU2O; ENHANCEMENT; GROWTH;
D O I
10.1016/j.matlet.2011.03.105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Described is the synthesis of various copper oxide nanostructured thin films by anodization of Cu foil in aqueous and ethylene glycol electrolytes containing hydroxide, chloride and/or fluoride ions at room temperature. The nanostructure topology was found to depend on the pH of the anodization electrolyte, KOH concentration, applied voltage and the presence of chloride and fluoride ions. Our results demonstrate the opportunity to grow complex copper oxide nanostructured films possessing sub-micron thick layers by a simple and straightforward electrochemical route. Although no film was observed on the Cu surface when the anodization was carried out at 10 V in KOH solutions with pH <= 10, various nanoarchitectures were formed upon increasing the electrolyte pH in the presence of chloride ions. Replacing chloride ions with fluoride ions resulted in the formation of highly porous nanoarchitectures. A simple mechanism for the formation of such porous structures is proposed. Anodizing in ethylene glycol-based electrolytes resulted in the formation of leaf-like nanoarchitectures up to 500 nm in thickness. XPS analysis was performed to study the composition of the formed nanoarchitectures. Vacuum annealing of the material at 280 degrees C resulted in the formation of porous Cu2O nanoarchitectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1949 / 1955
页数:7
相关论文
共 33 条
[1]   Thin film deposition of Cu2O and application for solar cells [J].
Akimoto, K. ;
Ishizuka, S. ;
Yanagita, M. ;
Nawa, Y. ;
Paul, Goutam K. ;
Sakurai, T. .
SOLAR ENERGY, 2006, 80 (06) :715-722
[2]   A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing [J].
Allam, Nageh K. ;
Shankar, Karthik ;
Grimes, Craig A. .
ADVANCED MATERIALS, 2008, 20 (20) :3942-+
[3]   Self-Assembled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization [J].
Allam, Nageh K. ;
Feng, Xinjian J. ;
Grimes, Craig A. .
CHEMISTRY OF MATERIALS, 2008, 20 (20) :6477-6481
[4]   Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays [J].
Allam, Nageh K. ;
Grimes, Craig A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) :1468-1475
[5]   Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes [J].
Allam, Nageh K. ;
Shankar, Karthik ;
Grimes, Craig A. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (20) :2341-2348
[6]  
Allam NK, 2007, INT J ELECTROCHEM SC, V2, P549
[7]   Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte [J].
Allam, Nageh K. ;
Grimes, Craig A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (35) :13028-13032
[8]   Enhanced Photoassisted Water Electrolysis Using Vertically Oriented Anodically Fabricated Ti-Nb-Zr-O Mixed Oxide Nanotube Arrays [J].
Allam, Nageh K. ;
Alamgir, Faisal ;
El-Sayed, Mostafa A. .
ACS NANO, 2010, 4 (10) :5819-5826
[9]   Photoelectrochemical Water Oxidation Characteristics of Anodically Fabricated TiO2 Nanotube Arrays: Structural and Optical Properties [J].
Allam, Nageh K. ;
El-Sayed, Mostafa A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (27) :12024-12029
[10]   Effect of Rapid Infrared Annealing on the Photoelectrochemical Properties of Anodically Fabricated TiO2 Nanotube Arrays [J].
Allam, Nageh K. ;
Grimes, Craig A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (19) :7996-7999