Spirale Reversi: Reverse decoding of the Edgebreaker encoding

被引:16
作者
Isenburg, M [1 ]
Snoeyink, J [1 ]
机构
[1] Univ N Carolina, Coll Arts & Sci, Dept Comp Sci, Chapel Hill, NC 27599 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2001年 / 20卷 / 1-2期
基金
加拿大自然科学与工程研究理事会;
关键词
connectivity compression; Edgebreaker; linear decoding;
D O I
10.1016/S0925-7721(01)00034-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a simple linear time algorithm for decoding Edgebreaker encoded triangle meshes in a single traversal. The Edgebreaker encoding technique, introduced by Rossignac (1999), encodes the connectivity of triangle meshes homeomorphic to a sphere with a guaranteed 2 bits per triangle or less. The encoding algorithm visits every triangle of the mesh in a depth-first order. The original decoding algorithm recreates the triangles in the same order they have been visited by the encoding algorithm and exhibits a worst case time complexity of O(n(2)). More recent work (Rossignac and Szymczak, 1999) uses the same traversal order and improves the worst case to O(n). However, for meshes with handles multiple traversals are needed during both encoding and decoding. We introduce here a simpler decoding technique that performs a single traversal and recreates the triangles in reverse order. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 11 条
[1]  
GUMHOLD S, 1998, SIGGRAPH 98 C P, P133, DOI DOI 10.1145/280814.280836
[2]  
Gumhold S, 2000, WSI20001
[3]  
Isenburg M, 2000, COMP GRAPH, P263, DOI 10.1145/344779.344919
[4]  
Isenburg M, 2000, PROC GRAPH INTERF, P197
[5]  
ISENBURG M, 1999, P SIBGRAPI 99 CAMP B, P27
[6]  
KING D, 1999, P 11 CAN C COMP GEOM, P146
[7]   Edgebreaker: Connectivity compression for triangle meshes [J].
Rossignac, J .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1999, 5 (01) :47-61
[8]   Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker [J].
Rossignac, J ;
Szymczak, A .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 14 (1-3) :119-135
[9]  
Szymczak A., 2000, Proceedings of the 12th Annual Canadian Conference on Computational Geometry, P257
[10]   Geometric compression through topological surgery [J].
Taubin, G ;
Rossignac, J .
ACM TRANSACTIONS ON GRAPHICS, 1998, 17 (02) :84-115