On triangulating three-dimensional polygons

被引:15
作者
Barequet, G
Dickerson, M
Eppstein, D
机构
[1] Tel Aviv Univ, Dept Comp Sci, IL-69978 Tel Aviv, Israel
[2] Middlebury Coll, Dept Math & Comp Sci, Middlebury, VT 05753 USA
[3] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1998年 / 10卷 / 03期
基金
美国国家科学基金会;
关键词
three-dimensions; triangulation;
D O I
10.1016/S0925-7721(98)00005-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A three-dimensional polygon is triangulable if it has a non-self-intersecting triangulation which defines a simply-connected 2-manifold. We show that the problem of deciding whether a 3-dimensional polygon is triangulable is Np-complete, We then establish some necessary conditions and some sufficient conditions for a polygon to be triangulable, providing special cases when the decision problem may be answered in polynomial time, (C) 1998 Elsevier Science B.V.
引用
收藏
页码:155 / 170
页数:16
相关论文
共 18 条
[1]  
Adams C.C., 1994, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
[2]  
[Anonymous], 1992, P SOL FREEF FABR S 1
[3]   FILLING GAPS IN THE BOUNDARY OF A POLYHEDRON [J].
BAREQUET, G ;
SHARIR, M .
COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (02) :207-229
[4]   Piecewise-linear interpolation between polygonal slices [J].
Barequet, G ;
Sharir, M .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 63 (02) :251-272
[5]  
Bern M., 1992, COMPUTING EUCLIDEAN
[6]  
BOSE P, 1995, LECT NOTES COMPUTER, V1027, P52
[7]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524
[8]   TOPOLOGICALLY SWEEPING AN ARRANGEMENT [J].
EDELSBRUNNER, H ;
GUIBAS, LJ .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1989, 38 (01) :165-194
[9]  
EDELSBRUNNER H, 1991, LECT NOTES COMPUTER, V497
[10]  
FELLOWS M, 1989, CONT MATH, V89, P189