Quantum geometry with intrinsic local causality

被引:60
作者
Markopoulou, F [1 ]
Smolin, L [1 ]
机构
[1] Penn State Univ, Ctr Gravitat Phys & Geometry, Dept Phys, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.58.084032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The space of states and operators for a large class of background independent theories of quantum spacetime dynamics is defined. The SU(2) spin networks of quantum general relativity are replaced by labelled compact two-dimensional surfaces. The space of states of the theory is the direct sum of the spaces of invariant tensors of a quantum group G(q) over all compact (finite genus) oriented 2-surfaces. The dynamics is background independent and locally causal. The dynamics constructs histories with discrete features of spacetime geometry such as causal structure and multifingered time. For SU(2) the theory satisfies the Bekenstein bound and the holographic hypothesis is recast in this formalism. [S0556-2821(98)04320-3].
引用
收藏
页数:12
相关论文
共 74 条
[1]  
[Anonymous], 1971, COMBINATORIAL MATH I
[2]   Towards a loop representation for quantum canonical supergravity [J].
ArmandUgon, D ;
Gambini, R ;
Obregon, O ;
Pullin, J .
NUCLEAR PHYSICS B, 1996, 460 (03) :615-631
[3]   CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
NUCLEAR PHYSICS B, 1994, 416 (02) :414-480
[4]   MULTIPLE MIRROR MANIFOLDS AND TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
PHYSICS LETTERS B, 1993, 303 (3-4) :249-259
[5]   Spin foam models [J].
Baez, JC .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) :1827-1858
[6]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[7]   QUANTUM MASS-SPECTRUM OF KERR BLACK-HOLE [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1974, 11 (09) :467-470
[8]   SPACE-TIME AS A CAUSAL SET [J].
BOMBELLI, L ;
LEE, J ;
MEYER, D ;
SORKIN, RD .
PHYSICAL REVIEW LETTERS, 1987, 59 (05) :521-524
[9]   Graphical evolution of spin network states [J].
Borissov, R .
PHYSICAL REVIEW D, 1997, 55 (10) :6099-6111
[10]   The geometry of quantum spin networks [J].
Borissov, R ;
Major, S ;
Smolin, L .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) :3183-3195