Differential H3K4 methylation identifies developmentally poised hematopoietic genes

被引:113
作者
Orford, Keith [2 ,3 ]
Kharchenko, Peter [1 ,4 ]
Lai, Weil [1 ]
Dao, Maria Carlota [2 ,3 ]
Worhunsky, David J. [2 ,3 ]
Ferro, Adam [2 ,3 ]
Janzen, Viktor [2 ,3 ]
Park, Peter J. [1 ,4 ]
Scadden, David T. [2 ,3 ]
机构
[1] Brigham & Womens Hosp, Harvard Partners Ctr Genet & Genom, Boston, MA 02115 USA
[2] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Ctr Regenerat Med, Boston, MA 02114 USA
[3] Harvard Univ, Harvard Stem Cell Inst, Cambridge, MA 02138 USA
[4] Childrens Hosp, Informat Program, Boston, MA 02115 USA
关键词
D O I
10.1016/j.devcel.2008.04.002
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Throughout development, cell fate decisions are converted into epigenetic information that determines cellular identity. Covalent histone modifications are heritable epigenetic marks and are hypothesized to play a central role in this process. In this report, we assess the concordance of histone H3 lysine 4 dimethylation (H3K4me2) and trimethylation (H3K4me3) on a genome-wide scale in erythro, development by analyzing pluripotent, multipotent, and unipotent cell types. Although H3K4me2 and H3K4me3 are concordant at most genes, multi-potential hematopoietic cells have a subset of genes that are differentially methylated (H3K4me2+/me3-). These genes are transcriptionally silent, highly enriched in lineage-specific hematopoietic genes, and uniquely susceptible to differentiation-induced H3K4 demethylation. Self-renewing embryonic stem cells, which restrict H3K4 methylation to genes that contain CpG islands (CGIs), lack H3K4me2+/me3- genes' These data reveal distinct epigenetic regulation of CGI and non-CGI genes during development and indicate an interactive relationship between DNA sequence and differential H3K4 methylation in lineage-specific differentiation.
引用
收藏
页码:798 / 809
页数:12
相关论文
共 21 条
[1]   Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein [J].
Ayton, PM ;
Chen, EH ;
Cleary, ML .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (23) :10470-10478
[2]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[3]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[4]   Histone and chromatin cross-talk [J].
Fischle, W ;
Wang, YM ;
Allis, CD .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :172-183
[5]   Cellular identity and lineage choice [J].
Fisher, AG .
NATURE REVIEWS IMMUNOLOGY, 2002, 2 (12) :977-982
[6]   A chromatin landmark and transcription initiation at most promoters in human cells [J].
Guenther, Matthew G. ;
Levine, Stuart S. ;
Boyer, Laurie A. ;
Jaenisch, Rudolf ;
Young, Richard A. .
CELL, 2007, 130 (01) :77-88
[7]   Multilineage gene expression precedes commitment in the hemopoietic system [J].
Hu, M ;
Krause, D ;
Greaves, M ;
Sharkis, S ;
Dexter, M ;
Heyworth, C ;
Enver, T .
GENES & DEVELOPMENT, 1997, 11 (06) :774-785
[8]   BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks [J].
Maere, S ;
Heymans, K ;
Kuiper, M .
BIOINFORMATICS, 2005, 21 (16) :3448-3449
[9]   The key to development: interpreting the histone code? [J].
Margueron, R ;
Trojer, P ;
Reinberg, D .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :163-176
[10]   Genome-scale profiling of histone H3.3 replacement patterns [J].
Mito, Y ;
Henikoff, JG ;
Henikoff, S .
NATURE GENETICS, 2005, 37 (10) :1090-1097