The planar k-means problem is NP-hard

被引:156
作者
Mahajan, Meena [1 ]
Nimbhorkar, Prajakta [1 ]
Varadarajan, Kasturi [2 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Univ Iowa, Iowa City, IA 52242 USA
关键词
Clustering; k-means; Planar graphs; NP-hardness;
D O I
10.1016/j.tcs.2010.05.034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the k-means problem, we are given a finite set S of points in R-m, and integer k >= 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this well-known problem is NP-hard even for instances in the plane, answering an open question posed by Dasgupta (2007) [7]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 22 条
[1]  
Allender E, 2005, LECT NOTES COMPUT SC, V3821, P238, DOI 10.1007/11590156_19
[2]   NP-hardness of Euclidean sum-of-squares clustering [J].
Aloise, Daniel ;
Deshpande, Amit ;
Hansen, Pierre ;
Popat, Preyas .
MACHINE LEARNING, 2009, 75 (02) :245-248
[3]  
[Anonymous], P ACM SIAM S DISCR A
[4]  
[Anonymous], 1986, CBMS NSF REGIONAL C
[5]  
[Anonymous], 2003, P 35 ANN ACM S THEOR, DOI [10.1145/780542.780550, DOI 10.1145/780542.780550]
[6]   Polynomial time approximation schemes for euclidean TSP and other geometric problems [J].
Arora, S .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :2-11
[7]  
Arthur D., 2006, P IEEE S FDN COMP SC
[8]  
Arthur D., P S COMP GEOM
[9]  
Dasgupta S., 2007, CS20070890 U CALIFOR
[10]   Clustering large graphs via the Singular Value Decomposition [J].
Drineas, P ;
Frieze, A ;
Kannan, R ;
Vempala, S ;
Vinay, V .
MACHINE LEARNING, 2004, 56 (1-3) :9-33