The Montagne Russe algorithm for global optimization

被引:2
作者
Aubin, JP [1 ]
Najman, L [1 ]
机构
[1] Univ Paris 09, Ctr Rech Viabil, F-75775 Paris 16, France
关键词
global optimization; viability theory; viability kernel; Lyapunov function;
D O I
10.1007/s001860050018
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The "Montagnes Russes" algorithm for finding the global minima of a lower semi-continuous function (thus involving state constraints) is a descent algorithm applied to an auxiliary function whose local and global minima are the global minima of the original function. Although this auxiliary function decreases along the trajectory of any of its minimizing sequences, the original function jumps above local maxima, leaves local minima, play "Montagnes Russes" (called "American Mountains" in Russian and "Big Dipper" in American!), but, ultimately, converges to its infimum. This auxiliary function is approximated by an increasing sequence of functions defined recursively at each point of the minimizing sequence.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 12 条
[1]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI
[2]  
Aubin J-P., 1991, VIABILITY THEORY
[3]  
Aubin Jean-Pierre, 2009, Set-valued analysis
[4]  
AUBIN JP, 1994, CR ACAD SCI I-MATH, V319, P631
[5]  
CARDALIAGUET P, 1994, CR ACAD SCI I-MATH, V318, P607
[6]  
Cardaliaguet P, 1994, RAIRO-MATH MODEL NUM, V28, P441
[7]  
CARDALIAGUET P, 1995, CAHIERS MATH DECISIO, V9510
[8]  
FRANKOWSKA H, 1991, CR ACAD SCI I-MATH, V312, P31
[9]  
FRANKOWSKA H, IN PRESS CONTROL NON
[10]  
Frankowska H., 1991, J MATH SYST ESTIM CO, V1, P371