Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell

被引:69
作者
Arbab, Alvira Ayoub [1 ]
Sun, Kyung Chul [2 ]
Sahito, Iftikhar Ali [1 ]
Qadir, Muhammad Bilal [1 ]
Jeong, Sung Hoon [1 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, Seoul 133791, South Korea
[2] Hanyang Univ, Dept Fuel Cells & Hydrogen, Seoul 133791, South Korea
关键词
CONVERSION EFFICIENCY; DISPERSION; FIBER; FUNCTIONALIZATION; SURFACTANTS; SEPARATION; GLUCOSE; STORAGE; DEVICE; YARNS;
D O I
10.1039/c5cp00818b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Omega sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (R-CT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.
引用
收藏
页码:12957 / 12969
页数:13
相关论文
共 48 条
[1]   Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations [J].
Asuri, Prashanth ;
Karajanagi, Sandeep S. ;
Sellitto, Edward ;
Kim, Dae-Yun ;
Kane, Ravi S. ;
Dordick, Jonathan S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 95 (05) :804-811
[2]   Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes [J].
Ausman, KD ;
Piner, R ;
Lourie, O ;
Ruoff, RS ;
Korobov, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8911-8915
[3]   Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J].
Cai, CX ;
Chen, J .
ANALYTICAL BIOCHEMISTRY, 2004, 332 (01) :75-83
[4]   Inkjet Printing of Single-Walled Carbon Nanotube/RuO2 Nanowire Supercapacitors on Cloth Fabrics and Flexible Substrates [J].
Chen, Pochiang ;
Chen, Haitian ;
Qiu, Jing ;
Zhou, Chongwu .
NANO RESEARCH, 2010, 3 (08) :594-603
[5]   Intertwined Aligned Carbon Nanotube Fiber Based Dye-Sensitized Solar Cells [J].
Chen, Tao ;
Qiu, Longbin ;
Cai, Zhenbo ;
Gong, Feng ;
Yang, Zhibin ;
Wang, Zhongsheng ;
Peng, Huisheng .
NANO LETTERS, 2012, 12 (05) :2568-2572
[6]   Woven Electronic Fibers with Sensing and Display Functions for Smart Textiles [J].
Cherenack, Kunigunde ;
Zysset, Christoph ;
Kinkeldei, Thomas ;
Muenzenrieder, Niko ;
Troester, Gerhard .
ADVANCED MATERIALS, 2010, 22 (45) :5178-+
[7]   Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies [J].
Elgrabli, Dan ;
Abella-Gallart, Steve ;
Aguerre-Chariol, Olivier ;
Robidel, Franck ;
Rogerieux, Francoise ;
Boczkowski, Jorge ;
Lacroix, Ghislaine .
NANOTOXICOLOGY, 2007, 1 (04) :266-278
[8]   Conductive mesh based flexible dye-sensitized solar cells [J].
Fan, Xing ;
Wang, Fuzhi ;
Chu, Zengze ;
Chen, Lin ;
Zhang, Chao ;
Zou, Dechun .
APPLIED PHYSICS LETTERS, 2007, 90 (07)
[9]   Core-Sheath Carbon Nanostructured Fibers for Efficient Wire-Shaped Dye-Sensitized Solar Cells [J].
Fang, Xin ;
Yang, Zhibin ;
Qiu, Longbin ;
Sun, Hao ;
Pan, Shaowu ;
Deng, Jue ;
Luo, Yongfeng ;
Peng, Huisheng .
ADVANCED MATERIALS, 2014, 26 (11) :1694-1698
[10]   Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 164 (1-3) :3-14