KERNEL DENSITY ESTIMATION VIA DIFFUSION

被引:1475
作者
Botev, Z. I. [1 ]
Grotowski, J. F. [1 ]
Kroese, D. P. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Nonparametric density estimation; heat kernel; bandwidth selection; Langevin process; diffusion equation; boundary bias; normal reference rules; data sharpening; variable bandwidth; BANDWIDTH SELECTION; BOUNDARY CORRECTION; VARIABLE LOCATION;
D O I
10.1214/10-AOS799
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new adaptive kernel density estimator based on linear diffusion processes. The proposed estimator builds on existing ideas for adaptive smoothing by incorporating information from a pilot density estimate. In addition, we propose a new plug-in bandwidth selection method that is free from the arbitrary normal reference rules used by existing methods. We present simulation examples in which the proposed approach outperforms existing methods in terms of accuracy and reliability.
引用
收藏
页码:2916 / 2957
页数:42
相关论文
共 52 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]  
[Anonymous], 2009, MARKOV PROCESSES CHA
[3]  
[Anonymous], 1994, Kernel smoothing
[4]  
AZENCOTT R, 1984, LECT NOTES MATH, V1059, P402
[5]  
BELLMAN R, 1961, BRIEF INTRO THETA FU
[6]  
Botev Z.I., 2007, Kernel Density Estimation Using Matlab
[7]  
Botev ZI., 2007, Nonparametric density estimation via diffusion mixing
[8]   Scale space view of curve estimation [J].
Chaudhuri, P ;
Marron, JS .
ANNALS OF STATISTICS, 2000, 28 (02) :408-428
[9]   Data sharpening as a prelude to density estimation [J].
Choi, E ;
Hall, P .
BIOMETRIKA, 1999, 86 (04) :941-947
[10]   SHORT TIME ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF PARABOLIC EQUATIONS [J].
COHEN, JK ;
HAGIN, FG ;
KELLER, JB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 38 (01) :82-&