Lack of increases in methylation at three CpG-rich genomic loci in non-mitotic adult tissues during aging

被引:27
作者
Chu, Michelle W.
Siegmund, Kimberly D.
Eckstam, Carrie L.
Kim, Jung Yeon
Yang, Allen S.
Kanel, Gary C.
Tavare, Simon
Shibata, Darryl [1 ]
机构
[1] Univ So Calif, Keck Sch Med, Dept Pathol, Los Angeles, CA 90033 USA
[2] Univ So Calif, Keck Sch Med, Dept Prevent Med, Los Angeles, CA 90033 USA
[3] Univ So Calif, Keck Sch Med, Dept Med, Los Angeles, CA 90033 USA
[4] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[5] Univ Cambridge, Dept Oncol, Cambridge, England
[6] Inje Univ Sanggye, Paik Hosp, Dept Pathol, Seoul, South Korea
来源
BMC MEDICAL GENETICS | 2007年 / 8卷
关键词
D O I
10.1186/1471-2350-8-50
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Cell division occurs during normal human development and aging. Despite the likely importance of cell division to human pathology, it has been difficult to infer somatic cell mitotic ages (total numbers of divisions since the zygote) because direct counting of lifetime numbers of divisions is currently impractical. Here we attempt to infer relative mitotic ages with a molecular clock hypothesis. Somatic genomes may record their mitotic ages because greater numbers of replication errors should accumulate after greater numbers of divisions. Mitotic ages will vary between cell types if they divide at different times and rates. Methods: Age-related increases in DNA methylation at specific CpG sites (termed "epigenetic molecular clocks") have been previously observed in mitotic human epithelium like the intestines and endometrium. These CpG rich sequences or "tags" start unmethylated and potentially changes in methylation during development and aging represent replication errors. To help distinguish between mitotic versus time-associated changes, DNA methylation tag patterns at 8-20 CpGs within three different genes, two on autosomes and one on the X-chromosome were measured by bisulfite sequencing from heart, brain, kidney and liver of autopsies from 21 individuals of different ages. Results: Levels of DNA methylation were significantly greater in adult compared to fetal or newborn tissues for two of the three examined tags. Consistent with the relative absence of cell division in these adult tissues, there were no significant increases in tag methylation after infancy. Conclusion: Many somatic methylation changes at certain CpG rich regions or tags appear to represent replication errors because this methylation increases with chronological age in mitotic epithelium but not in non-mitotic organs. Tag methylation accumulates differently in different tissues, consistent with their expected genealogies and mitotic ages. Although further studies are necessary, these results suggest numbers of divisions and ancestry are at least partially recorded by epigenetic replication errors within somatic cell genomes.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Myocyte renewal and ventricular remodelling [J].
Anversa, P ;
Nadal-Ginard, B .
NATURE, 2002, 415 (6868) :240-243
[2]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[3]   The modern molecular clock [J].
Bromham, L ;
Penny, D .
NATURE REVIEWS GENETICS, 2003, 4 (03) :216-224
[4]   QUANTITATIVE GROWTH AND DEVELOPMENT OF HUMAN BRAIN [J].
DOBBING, J ;
SANDS, J .
ARCHIVES OF DISEASE IN CHILDHOOD, 1973, 48 (10) :757-767
[5]   Genomic variability within an organism exposes its cell lineage tree [J].
Frumkin, D ;
Wasserstrom, A ;
Kaplan, S ;
Feige, U ;
Shapiro, E .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (05) :382-394
[6]   Socializing with the neighbors: Stem cells and their niche [J].
Fuchs, E ;
Tumbar, T ;
Guasch, G .
CELL, 2004, 116 (06) :769-778
[7]   Cell cycle regulation and hepatocarcinogenesis [J].
Greenbaum, LE .
CANCER BIOLOGY & THERAPY, 2004, 3 (12) :1200-1207
[8]   THE INHERITANCE OF EPIGENETIC DEFECTS [J].
HOLLIDAY, R .
SCIENCE, 1987, 238 (4824) :163-170
[9]  
Issa JP, 2000, CURR TOP MICROBIOL, V249, P101
[10]   Cancer epigenetics comes of age [J].
Jones, PA ;
Laird, PW .
NATURE GENETICS, 1999, 21 (02) :163-167