The evolution of organometallic complexes in organic light - Emitting devices

被引:95
作者
Thompson, Mark [1 ]
机构
[1] Univ So Calif, Dept Chem, Laird J Stabler Labs, Los Angeles, CA 90089 USA
关键词
D O I
10.1557/mrs2007.144
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article is an edited transcript of the MRS Medal presentation given by Mark Thompson (University of Southern California) on November 28, 2006, at the Materials Research Society Fall Meeting in Boston. Thompson was awarded the Medal for the "development of highly efficient heavy-metal phosphor complexes." The MRS Medal recognizes a specific outstanding recent discovery or advancement which is expected to have a major impact on the progress of any materials-related field. Successful research efforts have led to improvements in the internal efficiencies of organic light-emitting devices (OLEDs) from 25% to 100%. The electroluminescence process in OLEDs involves the formation of both singlet and triplet excitons, formed in a ratio of 1:3. There is a drive to improve spin statistics by developing compounds in which triplet excitons, in addition to singlet excitons, can be used efficiently. Success with the incorporation of heavy-metal-based phosphors into OLEDs, in which the strong spin-orbit coupling of the metal atom allows for efficient molecular phosphorescence from triplet excitons, resulted in the identification and synthesis of an iridium complex, fac-tris-phenylpyridine iridium, with internal efficiencies of 100%. This, in turn, has led to the synthesis of more than 100 iridium- and platinum-based compounds, which have become the most efficient light-emitting compounds yet discovered. Intellectual property from Thompson's research in this field has led to more than 50 U.S. patents and substantial entrepreneurial investment toward commercial applications and devices.
引用
收藏
页码:694 / 701
页数:8
相关论文
共 19 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J].
Adachi, C ;
Kwong, RC ;
Djurovich, P ;
Adamovich, V ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2082-2084
[3]   Excitonic singlet-triplet ratio in a semiconducting organic thin film [J].
Baldo, MA ;
O'Brien, DF ;
Thompson, ME ;
Forrest, SR .
PHYSICAL REVIEW B, 1999, 60 (20) :14422-14428
[4]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[5]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[6]   Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex [J].
Borek, Carsten ;
Hanson, Kenneth ;
Djurovich, Peter I. ;
Thompson, Mark E. ;
Aznavour, Kristen ;
Bau, Robert ;
Sun, Yiru ;
Forrest, Stephen R. ;
Brooks, Jason ;
Michalski, Lech ;
Brown, Julie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (07) :1109-1112
[7]   Synthesis and characterization of phosphorescent cyclometalated platinum complexes [J].
Brooks, J ;
Babayan, Y ;
Lamansky, S ;
Djurovich, PI ;
Tsyba, I ;
Bau, R ;
Thompson, ME .
INORGANIC CHEMISTRY, 2002, 41 (12) :3055-3066
[8]   Absorption and emission spectroscopic characterization of Ir(ppy)3 [J].
Holzer, W ;
Penzkofer, A ;
Tsuboi, T .
CHEMICAL PHYSICS, 2005, 308 (1-2) :93-102
[9]   100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films [J].
Kawamura, Y ;
Goushi, K ;
Brooks, J ;
Brown, JJ ;
Sasabe, H ;
Adachi, C .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[10]   Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes [J].
Lamansky, S ;
Djurovich, P ;
Murphy, D ;
Abdel-Razzaq, F ;
Lee, HE ;
Adachi, C ;
Burrows, PE ;
Forrest, SR ;
Thompson, ME .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (18) :4304-4312