Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation

被引:170
作者
Payne, AS
Kelly, EJ
Gitlin, JD
机构
[1] Washington Univ, Sch Med, Edward Mallinckrodt Dept Pediat, St Louis, MO 63110 USA
[2] Univ Washington, Dept Environm Hlth, Seattle, WA 98105 USA
关键词
D O I
10.1073/pnas.95.18.10854
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wilson disease is an autosomal recessive disorder of hepatic copper metabolism caused by mutations in a gene encoding a copper-transporting P-type ATPase, To elucidate the function of the Wilson protein, wild-type and mutant Wilson cDNAs were expressed in a Menkes copper transporter-deficient mottled fibroblast cell line defective in copper export. Expression of the wild-type cDNA demonstrated trans-Golgi network localization and copper-dependent trafficking of the Wilson protein identical to previous observations for the endogenously expressed protein in hepatocytes. Furthermore, expression of the Wilson cDNA rescued the mottled phenotype as evidenced by a reduction in copper accumulation and restoration of cell viability. In contrast, expression of an H1069Q mutant Wilson cDNA did not rescue the mottled phenotype, and immunofluorescence studies showed that this mutant Wilson protein was localized in the endoplasmic reticulum, Consistent with these findings, pulse-chase analysis demonstrated a 5-fold decrease in the half-life of the H1069Q mutant as compared with the wild-type protein. Maintenance of these transfected cell lines at 28 degrees C resulted in localization of the H1069Q protein in the trans-Golgi network, suggesting that a temperature-sensitive defect in protein folding followed by degradation constitutes the molecular basis of Wilson disease in patients harboring the H1069Q mutation. Taken together, these studies describe a tractable expression system for elucidating the function and localization of the copper-transporting ATPases in mammalian cells and provide compelling evidence that the Wilson protein can functionally substitute for the Menkes protein, supporting the concept that these proteins use common biochemical mechanisms to effect cellular copper homeostasis.
引用
收藏
页码:10854 / 10859
页数:6
相关论文
共 46 条
[1]  
[Anonymous], 1983, J IMMUNOL METH
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   THE WILSON DISEASE GENE IS A PUTATIVE COPPER TRANSPORTING P-TYPE ATPASE SIMILAR TO THE MENKES GENE [J].
BULL, PC ;
THOMAS, GR ;
ROMMENS, JM ;
FORBES, JR ;
COX, DW .
NATURE GENETICS, 1993, 5 (04) :327-337
[4]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[5]   FUNCTIONAL ACTIVATION OF THE CYSTIC-FIBROSIS TRAFFICKING MUTANT DELTA-F508-CFTR BY OVEREXPRESSION [J].
CHENG, SH ;
FANG, SL ;
ZABNER, J ;
MARSHALL, J ;
PIRAINO, S ;
SCHIAVI, SC ;
JEFFERSON, DM ;
WELSH, MJ ;
SMITH, AE .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1995, 268 (04) :L615-L624
[6]  
Christodoulou J, 1998, AM J MED GENET, V76, P154, DOI 10.1002/(SICI)1096-8628(19980305)76:2<154::AID-AJMG9>3.3.CO
[7]  
2-C
[8]  
Cox D W, 1996, Prog Liver Dis, V14, P245
[9]  
CUTHBERG JA, 1998, IN PRESS GASTROENTER, V27
[10]   PROCESSING OF MUTANT CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR IS TEMPERATURE-SENSITIVE [J].
DENNING, GM ;
ANDERSON, MP ;
AMARA, JF ;
MARSHALL, J ;
SMITH, AE ;
WELSH, MJ .
NATURE, 1992, 358 (6389) :761-764