Flood projections within the Niger River Basin under future land use and climate change

被引:94
作者
Aich, Valentin [1 ]
Liersch, Stefan [1 ]
Vetter, Tobias [1 ]
Fournet, Samuel [1 ]
Andersson, Jafet C. M. [2 ]
Calmanti, Sandro [3 ]
van Weert, Frank H. A. [4 ]
Hattermann, Fred F. [1 ]
Paton, Eva N. [5 ]
机构
[1] Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam, Germany
[2] Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden
[3] Italian Natl Agcy New Technol Energy & Sustainabl, Ctr Ric Casaccia, Via Anguillarese 301, I-00123 Rome, Italy
[4] Wetlands Int WI, POB 471, NL-6700 AL Wageningen, Netherlands
[5] Tech Univ Berlin, Inst Ecol, Ernst Reuter Pl 1, D-10587 Berlin, Germany
关键词
Niger; Floods; Land use change; Climate change; Ecohydrological modeling; Cordex; HYDROLOGICAL PROCESSES; IMPACT ASSESSMENT; WEST; WATER; AFRICA; SAHEL; MODEL; UNCERTAINTY; RAINFALL; RUNOFF;
D O I
10.1016/j.scitotenv.2016.04.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 677
页数:12
相关论文
共 78 条
[1]   Comparing impacts of climate change on streamflow in four large African river basins [J].
Aich, V. ;
Liersch, S. ;
Vetter, T. ;
Huang, S. ;
Tecklenburg, J. ;
Hoffmann, P. ;
Koch, H. ;
Fournet, S. ;
Krysanova, V. ;
Mueller, N. ;
Hattermann, F. F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (04) :1305-1321
[2]  
Aich V., 2014, Nat. Hazards Earth Syst. Sci. Discuss, V2, P5171, DOI DOI 10.5194/NHESSD-2-5171-2014
[3]   Climate or Land Use?-Attribution of Changes in River Flooding in the Sahel Zone [J].
Aich, Valentin ;
Liersch, Stefan ;
Vetter, Tobias ;
Andersson, Jafet C. M. ;
Mueller, Eva N. ;
Hattermann, Fred F. .
WATER, 2015, 7 (06) :2796-2820
[4]   Increasing River Flows in the Sahel? [J].
Amogu, Okechukwu ;
Descroix, Luc ;
Yero, Kadidiatou Souley ;
Le Breton, Eric ;
Mamadou, Ibrahim ;
Ali, Abdou ;
Vischel, Theo ;
Bader, Jean-Claude ;
Moussa, Ibrahim Bouzou ;
Gautier, Emmanuele ;
Boubkraoui, Stephane ;
Belleudy, Philippe .
WATER, 2010, 2 (02) :170-199
[5]  
Andersen I, 2005, DIR DEV, P1, DOI 10.1596/978-0-8213-6203-7
[6]   Improving Crop Yield and Water Productivity by Ecological Sanitation and Water Harvesting in South Africa [J].
Andersson, Jafet C. M. ;
Zehnder, Alexander J. B. ;
Wehrli, Bernhard ;
Jewitt, Graham P. W. ;
Abbaspour, Karim C. ;
Yang, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) :4341-4348
[7]  
[Anonymous], 2012, HARMONIZED WORLD SOI, DOI DOI 10.3334/ORNLDAAC/1247
[8]  
ArcSWAT, 2012, ARCSWAT ARCGIS ARCVI
[9]   A COMPREHENSIVE SURFACE-GROUNDWATER FLOW MODEL [J].
ARNOLD, JG ;
ALLEN, PM ;
BERNHARDT, G .
JOURNAL OF HYDROLOGY, 1993, 142 (1-4) :47-69
[10]  
Awotwi A., 2014, WATER ENV J