Tracking and orbit determination performance of the GRAS instrument on MetOp-A

被引:59
作者
Montenbruck, Oliver [1 ]
Andres, Yago [2 ]
Bock, Heike [3 ]
van Helleputte, Tom [4 ]
van den Ijssel, Jose [4 ]
Loiselet, Marc [5 ]
Marquardt, Christian [2 ]
Silvestrin, Pierluigi [5 ]
Visser, Pieter [4 ]
Yoon, Yoke [1 ]
机构
[1] Deutsches Zentrum Luft & Raumfahrt, German Space Operat Ctr, D-82230 Wessling, Germany
[2] Eumetsat, D-64295 Darmstadt, Germany
[3] Univ Bern, Astron Inst, CH-3012 Bern, Switzerland
[4] Delft Univ Technol, Delft Inst Earth Observat & Space Syst, NL-2629 HS Delft, Netherlands
[5] European Space Technol Ctr, European Space Agcy, NL-2200 AG Noordwijk, Netherlands
关键词
precise orbit determination; phase center variation; tracking loops; semi-codeless tracking; AGGA-2; GRAS; MetOp;
D O I
10.1007/s10291-008-0091-2
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The global navigation satellite system receiver for atmospheric sounding (GRAS) on MetOp-A is the first European GPS receiver providing dual-frequency navigation and occultation measurements from a spaceborne platform on a routine basis. The receiver is based on ESA's AGGA-2 correlator chip, which implements a high-quality tracking scheme for semi-codeless P(Y) code tracking on the L1 and L2 frequency. Data collected with the zenith antenna on MetOp-A have been used to perform an in-flight characterization of the GRAS instrument with focus on the tracking and navigation performance. Besides an assessment of the receiver noise and systematic measurement errors, the study addresses the precise orbit determination accuracy achievable with the GRAS receiver. A consistency on the 5 cm level is demonstrated for reduced dynamics orbit solutions computed independently by four different agencies and software packages. With purely kinematic solutions, 10 cm accuracy is obtained. As a part of the analysis, an empirical antenna offset correction and preliminary phase center correction map are derived, which notably reduce the carrier phase residuals and improve the consistency of kinematic orbit determination results.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 25 条
[1]  
AGUEDA A, 2004, NAPEOS MATH MODELS A
[2]   Precise orbit determination for the GOCE satellite using GPS [J].
Bock, H. ;
Jaeggi, A. ;
Svehla, D. ;
Beutler, G. ;
Hugentobler, U. ;
Visser, P. .
ADVANCES IN SPACE RESEARCH, 2007, 39 (10) :1638-1647
[3]  
Dach R., 2007, BERNESE GPS SOFTWARE
[4]  
Edwards P. G., 2006, ESA B, V127, P8
[5]  
Haines B., 2003, GEOPHYS RES ABST, V5, P12378
[6]  
LOISELET M, 2007, P JOINT 2007 EUMETSA
[7]  
LOISELET M, 2000, ESA B, V102, P38
[8]   The 1-Centimeter Orbit: Jason-1 Precision Orbit Determination Using GPS, SLR, DORIS, and Altimeter Data [J].
Luthcke, S. B. ;
Zelensky, N. P. ;
Rowlands, D. D. ;
Lemoine, F. G. ;
Williams, T. A. .
MARINE GEODESY, 2003, 26 (3-4) :399-421
[9]  
MARQUARDT C, 2007, P 2 FORMOSAT3 COSMIC
[10]   Reduced dynamic orbit determination using GPS code and carrier measurements [J].
Montenbruck, O ;
van Helleputte, T ;
Kroes, R ;
Gill, E .
AEROSPACE SCIENCE AND TECHNOLOGY, 2005, 9 (03) :261-271