Innovative remote sensing techniques to increase nitrogen use efficiency of corn

被引:46
作者
Bausch, WC
Diker, K
机构
[1] USDA ARS, Water Management Res Unit, AERC CSU, Ft Collins, CO 80523 USA
[2] Cukurova Univ, Fac Agr, Dept Agr Engn, Adana, Turkey
关键词
D O I
10.1081/CSS-100104117
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Nitrogen (N) fertilizer recommendations made without adequate knowledge of the N supply capability of a soil can lead to inefficient use of N. Proper crediting of N from manure and legumes as well as mineralization of N from organic matter is difficult. Remote sensing techniques that use the crop to indicate its N status show considerable promise for improving N management. Objectives of this paper were twofold: 1) to compare the N Reflectance Index (NRI) calculated from ground-based radiometer measurements acquired over irrigated corn (Zea mays L.) at a nadir view (0 degrees) and an oblique view (75 degrees) with measured plant N and 2) to evaluate the NRI obtained from both view angles for correcting in-season N deficiencies in a commercial corn field. The NRI calculated from canopy reflectance was not representative of plant N at the sixth leaf growth stage (V6) for either view angle because of the soil background influence on canopy reflectance. However, the oblique view NRI was a good predictor of plant N at V9 and V12 as was the nadir view NR1 at V12. The nadir view NR1 was not as sensitive as the oblique view NR1 at the V9 growth stage because soil was still visible through the canopy. Consequently, the nadir view NR1 provides a conservative estimate of plant N prior to complete canopy cover. Use of the nadir view NRI to detect in-season corn N deficiencies for the 1999 growing season reduced N application during the growing season by 39.2 kg N ha(-1) without reducing reducing grain yield. If the oblique view NRI would have been used to assess the plant N status, the first fertigation would not have been recommended which would have saved additional N.
引用
收藏
页码:1371 / 1390
页数:20
相关论文
共 22 条
[1]  
Bausch W. C., 1996, Precision agriculture. Proceedings of the 3rd International Conference, Minneapolis, Minnesota, USA, 23-26 June 1996., P23
[2]   SOIL BACKGROUND EFFECTS ON REFLECTANCE-BASED CROP COEFFICIENTS FOR CORN [J].
BAUSCH, WC .
REMOTE SENSING OF ENVIRONMENT, 1993, 46 (02) :213-222
[3]  
Bausch WC, 1996, T ASAE, V39, P1869, DOI 10.13031/2013.27665
[4]   USE OF A CHLOROPHYLL METER TO MONITOR NITROGEN STATUS AND SCHEDULE FERTIGATION FOR CORN [J].
BLACKMER, TM ;
SCHEPERS, JS .
JOURNAL OF PRODUCTION AGRICULTURE, 1995, 8 (01) :56-60
[5]   Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies [J].
Blackmer, TM ;
Schepers, JS ;
Varvel, GE ;
WalterShea, EA .
AGRONOMY JOURNAL, 1996, 88 (01) :1-5
[6]  
Bremner J.M., 1996, Nitrogen-total. Methods of soil analysis. Part, P1085, DOI DOI 10.2134/AGRONMONOGR9.2.2ED.C31
[7]  
Diker K, 1999, PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON PRECISION AGRICULTURE, PTS A AND B, P1445
[8]  
DIKER K, 1998, THESIS COLORADO STAT
[9]  
FERGUSON RB, 1994, FERTILIZER NITROGEN
[10]  
FERGUSON RB, 1998, REC AGR P 4 INT C AM, P733