Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays

被引:68
作者
Beron, F. [1 ]
Clime, L. [1 ]
Ciureanu, M. [1 ]
Menard, D. [1 ]
Cochrane, R. W. [2 ]
Yelon, A. [1 ]
机构
[1] Ecole Polytech, Dept Genie Phys & Regroupement Quebecois Mat Poin, Montreal, PQ H3C 3A7, Canada
[2] Univ Montreal, Dept Phys & Regroupement Quebecois Mat Pointe RQM, Montreal, PQ H3C 3A7, Canada
关键词
ferromagnetic nanowires; first-order reversal curve diagrams; magnetostatic interactions; coercivity; Preisach model;
D O I
10.1166/jnn.2008.159
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
First-order reversal curve diagrams have been used to investigate magnetostatic interactions and average coercivity of individual wires in soft ferromagnetic uniform length nanowire arrays. We present a method for identifying these physical parameters on the out-of-plane first-order reversal curve diagrams: the position of the irreversible part on the critical axis is a good approximation to the average value of the nanowire coercivity and the maximum interaction field is equal to the interaction field at saturation. Their dependence upon material (CoFeB and Ni) and nanowire length are presented. The magnetostatic interactions increase linearly with length, in agreement with a model developed previously. The global array coercivity, obtained from magnetization curves, is generally lower than the apparent average coercivity for individual nanowires. This coercivity reduction increases linearly with the magnetostatic interactions. The general shape of the out-of-plane first-order reversal curve diagrams is compared with those obtained from a theoretical moving Preisach model.
引用
收藏
页码:2944 / 2954
页数:11
相关论文
共 22 条
[1]  
ALMAWLAWI D, 1991, J APPL PHYS, V70, P4421, DOI 10.1063/1.349125
[2]   Magnetic properties of electrodeposited CoFeB thin films and nanowire arrays [J].
Ciureanu, M ;
Beron, F ;
Clime, L ;
Ciureanu, P ;
Yelon, A ;
Ovari, TA ;
Cochrane, RW ;
Normandin, F ;
Veres, T .
ELECTROCHIMICA ACTA, 2005, 50 (22) :4487-4497
[3]   Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays [J].
Clime, L ;
Béron, F ;
Ciureanu, P ;
Ciureanu, M ;
Cochrane, RW ;
Yelon, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 299 (02) :487-491
[4]   Magnetostatic interactions in dense nanowire arrays [J].
Clime, L ;
Clureanu, P ;
Yelon, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 297 (01) :60-70
[5]  
Clime L, 2004, J OPTOELECTRON ADV M, V6, P1005
[6]   Magnetic nanowires [J].
Fert, A ;
Piraux, L .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :338-358
[7]   Magnetic properties of magnetic nanowire Arrays [J].
Han, GC ;
Zong, BY ;
Wu, YH .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) :2562-2564
[8]   Micromagnetic simulations of magnetostatically coupled nickel nanowires [J].
Hertel, R .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (11) :5752-5758
[9]   A novel nanostructured microstrip device for tunable stopband filtering applications at microwaves [J].
Huynen, I ;
Goglio, G ;
Vanhoenacker, D ;
Vander Vorst, A .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1999, 9 (10) :401-403
[10]   Interconnected nanowire clusters in polyimide for flexible circuits and magnetic sensing applications [J].
Lindeberg, M ;
Hjort, K .
SENSORS AND ACTUATORS A-PHYSICAL, 2003, 105 (02) :150-161