Semi-continuity of complex singularity exponents and Kahler-Einstein metrics on Fano orbifolds

被引:239
作者
Demailly, JP
Kollár, J
机构
[1] Univ Grenoble 1, Math Lab, Inst Fourier, F-38402 St Martin Dheres, France
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2001年 / 34卷 / 04期
关键词
D O I
10.1016/S0012-9593(01)01069-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce complex singularity exponents of plurisubharmonic functions and prove a general semi-continuity result for them. This concept contains as a special case several similar concepts which have been considered e.g. by Arnold and Varchenko, mostly for the study of hypersurface singularities. The plurisubharmonic version is somehow based on a reduction to the algebraic case, but it also takes into account more quantitative informations of great interest for complex analysis and complex differential geometry. We give as an application a new derivation of criteria for the existence of Kahler-Einstein metrics on certain Fano orbifolds, following Nadel's original ideas (but with a drastic simplication in the technique, once the semi-continuity result is taken for granted). In this way, three new examples of rigid Kahler-Einstein Del Pezzo surfaces with quotient singularities are obtained. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:525 / 556
页数:32
相关论文
共 52 条
[1]  
Andreotti A., 1965, PUBL MATH-PARIS, V25, P81
[2]   EFFECTIVE FREENESS AND POINT SEPARATION FOR ADJOINT BUNDLES [J].
ANGEHRN, U ;
SIU, YT .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :291-308
[3]  
ARNOLD VI, 1985, PROGR MATH
[4]  
AUBIN T, 1978, B SCI MATH, V102, P63
[5]   ASYMPTOTIC DEVELOPMENT OF FUNCTIONS OBTAINED BY INTEGRATION ON THE FIBERS [J].
BARLET, D .
INVENTIONES MATHEMATICAE, 1982, 68 (01) :129-174
[6]  
BERENSTEIN CA, 1989, P C GEOM ALG ASP SEV, P81
[7]   ALGEBRAIC VALUES OF MEROMORPHIC MAPS [J].
BOMBIERI, E .
INVENTIONES MATHEMATICAE, 1970, 10 (04) :267-&
[8]  
BOYER C, 2000, UNPUB NEW SASAKIAN E
[9]  
Demailly J. P., 1992, LECT NOTES MATH, V1507
[10]  
Demailly J.-P., 1992, J. Algebraic Geom., V1, P361