JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells

被引:61
作者
Li, L [1 ]
Feng, ZW [1 ]
Porter, AG [1 ]
机构
[1] Inst Mol & Cell Biol, Singapore 117609, Singapore
关键词
D O I
10.1074/jbc.M310415200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
c-Jun NH2-terminal kinases (JNKs) potentiate transcriptional activity of c-Jun by phosphorylating serines 63 and 73. Moreover, JNK and c-Jun can modulate apoptosis. However, an involvement of nitric oxide (NO)induced phosphorylation of c-Jun on Ser-63 and Ser-73 in apoptosis has not been explored. We report that in SH-Sy5y neuroblastoma cells, NO induced apoptosis following JNK activation and phosphorylation of c-Jun almost exclusively on Ser-63. Importantly, NO-induced apoptosis and caspase-3 activity were inhibited in cells stably transformed with dominant-negative c-Jun in which Ser-63 is mutated to alanine (S63A), but not in cells transformed with dominant-negative c-Jun (S73A). Ser-63 of c-Jun (but not Ser-73) was required for NO-induced, c-Jun-dependent transcriptional activity. NO-induced apoptosis, Ser-63 phosphorylation of c-Jun, and caspase-3 activity were all inhibited in SH-Sy5y cells transformed with dominant-negative jnk. A caspase-3 inhibitor prevented apoptosis but not c-Jun phosphorylation. In a different neuroblastoma cell line, NO-induced Ser-63 phosphorylation of c-Jun and apoptosis were blocked by a specific JNK inhibitor. We conclude that NO-inducible apoptosis is mediated by JNK-dependent Ser-63 phosphorylation of c-Jun upstream of caspase-3 activation in neuroblastoma cells.
引用
收藏
页码:4058 / 4065
页数:8
相关论文
共 64 条
[1]   GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BONFOCO, E ;
ZHIVOTOVSKY, B ;
ORRENIUS, S ;
LIPTON, SA ;
NICOTERA, P .
NEURON, 1995, 15 (04) :961-973
[2]  
BAKER DL, 1989, CANCER RES, V49, P4142
[3]   Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation [J].
Behrens, A ;
Sibilia, M ;
Wagner, EF .
NATURE GENETICS, 1999, 21 (03) :326-329
[4]   Nitric oxide and the regulation of gene expression [J].
Bogdan, C .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :66-75
[5]   Cell-permeable peptide inhibitors of JNK novel blockers of β-cell death [J].
Bonny, C ;
Oberson, A ;
Negri, S ;
Sauser, C ;
Schorderet, DF .
DIABETES, 2001, 50 (01) :77-82
[6]  
BROWN PH, 1994, ONCOGENE, V9, P791
[7]   Nitric oxide (NO):: an effector of apoptosis [J].
Brüne, B ;
von Knethen, A ;
Sandau, KB .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (10) :969-975
[8]   Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress [J].
Buschmann, T ;
Potapova, O ;
Bar-Shira, A ;
Ivanov, VN ;
Fuchs, SY ;
Henderson, S ;
Fried, VA ;
Minamoto, T ;
Alarcon-Vargas, D ;
Pincus, MR ;
Gaarde, WA ;
Holbrook, NJ ;
Shiloh, Y ;
Ronai, Z .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (08) :2743-2754
[9]   Signal transduction - Three paths to stress relief [J].
Canman, CE ;
Kastan, MB .
NATURE, 1996, 384 (6606) :213-214
[10]   p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells [J].
Cheng, AW ;
Chan, SL ;
Milhavet, O ;
Wang, SQ ;
Mattson, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (46) :43320-43327