Note on generalization of Shannon theorem and inequality

被引:4
作者
Fa, KS [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, Maringa, Parana, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 40期
关键词
D O I
10.1088/0305-4470/31/40/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, Santos obtained a generalized entropy using four assumptions which stared that an entropy must: (i) be a continuous function of the probabilities {p(i)}; (ii) be a monotonic increasing function of the number of states W, in the case of equiprobability; (iii) satisfy S-q(T) (A + B)/k = S-q(T) (A)/k + S-q(T) (B)/k + (1 - q) S-q(T) (A) S-q(T) (B)/k(2) (where A and B are two independent systems) and (iv) satisfy the relation S-q(T) ({p(i)}) = S-q(T) ({p(L), p(M)}) + p(L)(q) S-q(T) ({p(i)/p(L)}) + p(M)(q) S-q(T) ({p(i)/p(M)}), where p(L) + p(M) = 1 (p(L) = Sigma(i=1)(WL) p(i) and p(M) = Sigma(i=WL)(W) p(i)). Santos showed that the only function which satisfies all of these properties is the generalized Tsallis entropy. In this paper we perform a similar analysis and we obtain a family of entropies which are equivalent to the Tsallis entropy. We also discuss the Shannon inequality in the context of the generalized Tsallis entropy.
引用
收藏
页码:8159 / 8164
页数:6
相关论文
共 7 条
[1]  
CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
[2]   GENERALIZED INFORMATION FUNCTIONS [J].
DAROCZY, Z .
INFORMATION AND CONTROL, 1970, 16 (01) :36-&
[3]  
LANDSBERG PT, 1990, THERMODYNAMIC STAT M
[4]  
Littlewood J.E., 1973, INEQUALITIES
[5]  
SANTOS RJV, 1997, J MATH PHYS, V38, P4104
[6]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[7]   NONEXTENSIVE PHYSICS - A POSSIBLE CONNECTION BETWEEN GENERALIZED STATISTICAL-MECHANICS AND QUANTUM GROUPS [J].
TSALLIS, C .
PHYSICS LETTERS A, 1994, 195 (5-6) :329-334