An active learning approach for stroke lesion segmentation on multimodal MRI data

被引:19
作者
Chyzhyk, Darya [1 ]
Dacosta-Aguayo, Rosalia [1 ,3 ]
Mataro, Maria [2 ,3 ]
Grana, Manuel [1 ]
机构
[1] Univ Basque Country, Grp Inteligencia Computac, Vizcaya, Spain
[2] Univ Barcelona, Inst Brain Cognit & Behav IR3C, E-08007 Barcelona, Spain
[3] Univ Barcelona, Fac Psychol, Dept Psychiat & Clin Psychobiol, E-08007 Barcelona, Spain
关键词
Stroke; Lesion segmentation; Multimodal MRI; Active learning; Random forests; IMAGE-ANALYSIS; FORESTS; FMRI;
D O I
10.1016/j.neucom.2014.01.077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The segmentation of lesion tissue in brain images of stroke patients serves to identify the extent of the affected tissues, to perform prognosis on its recovery, and to measure its evolution in longitudinal studies. The different regions of the lesion may have different imaging contrast properties in different image modalities, making difficult the automation of the segmentation process. In this paper we consider an Active Learning selective sampling approach to build image data classifiers from multimodal MRI data to perform voxel based lesion segmentation. We report encouraging results over a dataset combining functional, anatomical and diffusion data. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 2009, MED IMAGE COMPUTING
[2]   FLAIR lesion segmentation: Application in patients with brain tumors and acute ischemic stroke [J].
Artzi, Moran ;
Aizenstein, Orna ;
Jonas-Kimchi, Tali ;
Myers, Vicki ;
Hallevi, Hen ;
Ben Bashat, Dafna .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (09) :1512-1518
[3]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Active Learning with Bootstrapped Dendritic Classifier applied to medical image segmentation [J].
Chyzhyk, Darya ;
Ayerdi, Borja ;
Maiora, Josu .
PATTERN RECOGNITION LETTERS, 2013, 34 (14) :1602-1608
[6]   IMPROVING GENERALIZATION WITH ACTIVE LEARNING [J].
COHN, D ;
ATLAS, L ;
LADNER, R .
MACHINE LEARNING, 1994, 15 (02) :201-221
[7]  
Criminisi A, 2011, LECT NOTES COMPUT SC, V6533, P106, DOI 10.1007/978-3-642-18421-5_11
[8]  
Geremia E, 2010, LECT NOTES COMPUT SC, V6361, P111
[9]   Semisupervised SVM Batch Mode Active Learning with Applications to Image Retrieval [J].
Hoi, Steven C. H. ;
Jin, Rong ;
Zhu, Jianke ;
Lyu, Michael R. .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2009, 27 (03)
[10]  
Iglesias JE, 2011, LECT NOTES COMPUT SC, V6801, P25, DOI 10.1007/978-3-642-22092-0_3